当前位置: 首页 > news >正文

机器学习之强化学习

引言

在人工智能的众多分支中,强化学习(Reinforcement Learning, RL) 因其独特的学习范式而备受关注。与依赖标注数据的监督学习或探索数据结构的无监督学习不同,强化学习的核心是智能体(Agent)通过与环境的动态交互来学习最优策略。AlphaGo击败人类围棋冠军、自动驾驶汽车在复杂路况中决策、机器人灵活抓取物体——这些突破性成就的背后,都离不开强化学习的核心技术。本文将深入解析强化学习的核心原理、算法分类、应用场景及未来挑战,为读者呈现这一领域的全貌。


一、强化学习的核心原理

1.1 基本框架:智能体与环境的交互

强化学习的核心是**智能体(Agent)环境(Environment)**的持续交互。智能体通过观察环境状态(State)选择行动(Action),环境则返回奖励(Reward)并更新状态。这种循环的目标是最大化智能体长期累积的奖励。

  • 状态(State):描述环境的当前信息(如自动驾驶中的车辆位置、周围障碍物)。

  • 行动(Action):智能体可执行的操作(如加速、转向)。

  • 奖励(Reward):环境对智能体行动的即时反馈(如成功抵达终点得+1,碰撞得-1)。

1.2 核心目标:策略优化

智能体的目标是学习一个策略(Policy),即从状态到行动的最优映射。策略优化的核心数学工具是贝尔曼方程(Bellman Equation),它通过动态规划的思想将长期奖励分解为即时奖励与未来奖励的加权和:

V(s) = \max_a \left[ R(s, a) + \gamma \sum_{s'} P(s' | s, a) V(s') \right]

其中,V(s)是状态价值函数,\gamma是折扣因子(通常取值0.9~0.99),体现未来奖励的重要性。


二、强化学习的算法分类

根据学习方法的不同,强化学习算法可分为三类:

2.1 基于价值的方法(Value-Based)

通过估计状态或行动的价值(如Q值)间接优化策略。

  • Q-Learning:直接学习行动价值函数 Q(s,a),更新公式为:

Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]

  • Deep Q-Network (DQN):用神经网络近似Q值,引入经验回放(Experience Replay)和固定目标网络(Target Network)解决训练不稳定问题。

适用场景:离散行动空间(如游戏控制)。

2.2 基于策略的方法(Policy-Based)

直接优化策略函数 π(a∣s),适用于连续行动空间。

  • REINFORCE:通过蒙特卡洛采样估计梯度,更新策略参数。

  • PPO(Proximal Policy Optimization):通过限制策略更新的幅度,确保训练稳定性。

优势:能处理高维、连续动作(如机器人控制)。

2.3 演员-评论家方法(Actor-Critic)

结合价值函数与策略函数,Actor负责生成行动,Critic评估行动价值。

  • A3C(Asynchronous Advantage Actor-Critic):多线程异步更新,加速训练。

  • SAC(Soft Actor-Critic):引入熵正则化,鼓励探索。

特点:兼具价值与策略方法的优点,适合复杂任务。


三、强化学习的应用场景

3.1 游戏AI

  • AlphaGo & AlphaZero:通过自我对弈(Self-Play)在围棋、国际象棋等领域超越人类。

  • OpenAI Five:在Dota 2中击败职业选手,展现多智能体协作能力。

3.2 机器人控制

  • 机械臂抓取:通过强化学习训练机器人适应不同形状物体的抓取策略。

  • 双足机器人行走:波士顿动力(Boston Dynamics)的Atlas机器人通过RL实现复杂地形行走。

3.3 自动驾驶

  • 路径规划:在动态环境中实时决策(如超车、避障)。

  • 仿真训练:利用虚拟环境(如CARLA)加速算法迭代。

3.4 资源优化

  • 能源管理:优化电网或数据中心的能源分配。

  • 金融交易:通过强化学习制定高频交易策略。


四、强化学习的挑战与前沿方向

4.1 核心挑战

  1. 样本效率低:训练需大量交互数据(如AlphaGo需数百万局对弈)。

  2. 探索与利用的平衡:过度探索降低效率,过度利用易陷局部最优。

  3. 稀疏奖励问题:关键奖励信号稀少(如迷宫任务中仅终点有奖励)。

4.2 前沿研究方向

  1. 元强化学习(Meta-RL):让智能体快速适应新任务(如Few-Shot Learning)。

  2. 分层强化学习(Hierarchical RL):将复杂任务分解为子任务,提升可解释性。

  3. 多智能体强化学习(Multi-Agent RL):解决协作与竞争问题(如无人机编队)。


五、实践建议与工具

5.1 开发工具

  • OpenAI Gym:提供标准强化学习环境(如CartPole、Atari游戏)。

  • Stable Baselines3:集成PPO、DQN等主流算法的代码库。

  • PyTorch & TensorFlow:支持深度强化学习的框架。

5.2 调参技巧

  • 探索率衰减:初期高探索率(如ε=1.0),后期逐步降低。

  • 奖励设计:设计密集奖励函数(如分阶段奖励)加速训练。

  • 并行化训练:使用A3C或分布式框架提升效率。


六、结语

强化学习凭借其与人类学习模式的相似性(试错与反馈),已成为解决复杂决策问题的利器。尽管面临样本效率、泛化能力等挑战,随着算法创新与算力提升,其在医疗、教育、工业等领域的应用前景广阔。未来,强化学习也必将成为通用人工智能(AGI)的核心技术之一,推动机器真正理解并适应动态世界。

相关文章:

机器学习之强化学习

引言 在人工智能的众多分支中,强化学习(Reinforcement Learning, RL) 因其独特的学习范式而备受关注。与依赖标注数据的监督学习或探索数据结构的无监督学习不同,强化学习的核心是智能体(Agent)通过与环境…...

基于 uni-app 和 Vue3 开发的汉字书写练习应用

基于 uni-app 和 Vue3 开发的汉字书写练习应用 前言 本文介绍了如何使用 uni-app Vue3 uview-plus 开发一个汉字书写练习应用。该应用支持笔画演示、书写练习、进度保存等功能,可以帮助用户学习汉字书写。 在线演示 演示地址: http://demo.xiyueta.com/case/w…...

每天五分钟深度学习PyTorch:向更深的卷积神经网络挑战的ResNet

本文重点 ResNet大名鼎鼎,它是由何恺明团队设计的,它获取了2015年ImageNet冠军,它很好的解决了当神经网络层数过多出现的难以训练的问题,它创造性的设计了跳跃连接的方式,使得卷积神经网络的层数出现了大幅度提升,设置可以达到上千层,可以说resnet对于网络模型的设计具…...

electron + vue3 + vite 主进程到渲染进程的单向通信

用示例讲解下主进程到渲染进程的单向通信 初始版本项目结构可参考项目:https://github.com/ylpxzx/electron-forge-project/tree/init_project 主进程到渲染进程(单向) 以Electron官方文档给出的”主进程主动触发动作,发送内容给渲…...

《白帽子讲 Web 安全》之身份认证

目录 引言 一、概述 二、密码安全性 三、认证方式 (一)HTTP 认证 (二)表单登录 (三)客户端证书 (四)一次性密码(OTP) (五)多因…...

postgrel

首先按照惯例,肯定是需要对PostgreSQL数据库进行一系列信息收集的,常用的命令有以下这些:-- 版本信息select version();show server_version;select pg_read_file(PG_VERSION, 0, 200);-- 数字版本信息包括小版号SHOW server_version_num;SEL…...

Java基础——java8+新特性——方法引用(::)

1. 什么是方法引用? 定义:Java 8 引入的语法糖,用于 简化 Lambda 表达式,直接引用已有的方法。 符号:使用 :: 双冒号操作符。 本质:将方法作为函数式接口的实例传。 2. 方法引用的四种类型 类型 语法 …...

基于SpringBoot的商城管理系统(源码+部署教程)

运行环境 数据库:MySql 编译器:Intellij IDEA 前端运行环境:node.js v12.13.0 JAVA版本:JDK 1.8 主要功能 基于Springboot的商城管理系统包含管理端和用户端两个部分,主要功能有: 管理端 首页商品列…...

uniapp实现的个人中心页面(仿小红书)

采用 uniapp 实现的一款仿小红书个人中心页面模板,支持vue2、vue3, 同时适配H5、小程序等多端多应用。 简约美观大方 可到插件市场下载尝试: https://ext.dcloud.net.cn/plugin?id22516 示例...

K8s面试题总结(十一)

1.如何优化docker镜像的大小? 使用多阶段构建(multi-stage build)选择更小的基础镜像(如alpine)减少镜像层数,合并RUN命令 2.请解释Docker中的网络模式(如bridge,host,none) Bridge&#xff…...

用CMake编译glfw进行OpenGL配置,在Visual Studio上运行

Visual Studio的下载 Visual Studio 2022 C 编程环境 GLFW库安装 GLFW官网地址 GLFW官网地址:https://www.glfw.org下载相应版本,如下图: CMake软件进行编译安装 下载CMake 下载的如果是源码包,需要下载CMake软件进行编译安装…...

仿12306项目(4)

基本预定车票功能的开发 对于乘客购票来说,需要有每一个车次的余票信息,展示给乘客,供乘客选择,因此首个功能是余票的初始化,之后是余票查询,这两个都是控台端。对于会员端的购票,需要有余票查询…...

【GPT入门】第9课 思维树概念与原理

【GPT入门】第9课 思维树概念与原理 1.思维树概念与原理2. 算24游戏的方法 1.思维树概念与原理 思维树(Tree of Thought,ToT )是一种大模型推理框架,旨在解决更加复杂的多步骤推理任务,让大模型能够探索多种可能的解决…...

uniapp登录用户名在其他页面都能响应

使用全局变量 1、在APP.vue中定义一个全局变量&#xff0c;然后在需要的地方引用它&#xff1b; <script>export default {onLaunch: function() {console.log(App Launch)this.globalData { userInfo: {} };},onShow: function() {console.log(App Show)},onHide: fu…...

一周热点-OpenAI 推出了 GPT-4.5,这可能是其最后一个非推理模型

在人工智能领域,大型语言模型一直是研究的热点。OpenAI 的 GPT 系列模型在自然语言处理方面取得了显著成就。GPT-4.5 是 OpenAI 在这一领域的又一力作,它在多个方面进行了升级和优化。 1 新模型的出现 GPT-4.5 目前作为研究预览版发布。与 OpenAI 最近的 o1 和 o3 模型不同,…...

Linux基础--用户管理

目录 查看用户 使用命令: id 创建用户 使用命令: useradd ​编辑 为用户设置密码 使用命令: passwd ​编辑 删除用户 使用命令: userdel 创建用户组 使用命令: groupadd 删除用户组 使用命令: groupdel 用户设置 使用命令: usermod 将用户从组中去除 使用…...

软件测试的基础入门(二)

文章目录 一、软件&#xff08;开发&#xff09;的生命周期什么是生命周期软件&#xff08;开发&#xff09;的生命周期需求分析计划设计编码测试运行维护 二、常见的开发模型瀑布模型流程优点缺点适应的场景 螺旋模型流程优点缺点适应的场景 增量模型和迭代模型流程适应的场景…...

【SpringMVC】深入解析@ RequestMapping 注解的概念及使用和 MVC 介绍

Spring Web MVC入门 1. Spring Web MVC 什么是 Spring Web MVC&#xff1f; MVC官方文档介绍 Spring Web MVC是Spring框架中的一个用来做网站开发的部分&#xff0c;它是基于Servlet技术的。 虽然它的正式名字叫“Spring Web MVC”&#xff0c;但大家一般都简称它“SpringMVC”…...

YOLOv8 自定义目标检测

一、引言 YOLOv8 不仅支持预训练模型的推理&#xff0c;还允许用户将其应用于自定义对象检测。本文将详细介绍如何使用 YOLOv8 训练一个新的模型&#xff0c;并在自定义数据集上进行对象检测。 二、数据集准备 1. 数据集格式 YOLOv8 支持多种数据集格式&#xff0c;包括 CO…...

抓包分析工具介绍

什么是抓包分析工具&#xff1f; 抓包分析工具&#xff0c;也称为网络数据包嗅探器或协议分析器&#xff0c;用于捕获和检查网络上传输的数据包。这些数据包包含了网络通信的详细信息&#xff0c;例如请求的资源、服务器的响应、HTTP 头信息、传输的数据内容等等。通过分析这些…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...