(ECCV2018)CBAM改进思路
论文链接:https://arxiv.org/abs/1807.06521
论文题目:CBAM: Convolutional Block Attention Module
会议:ECCV2018
论文方法
利用特征的通道间关系生成了一个通道注意图。 由于特征映射的每个通道被认为是一个特征检测器,通道注意力集中在给定输入图像的“什么”是有意义的。 为了有效地计算通道注意力,我们压缩了输入特征映射的空间维度。 对于空间信息的聚合,目前普遍采用平均池化方法。 除了之前的工作,我们认为最大池化收集了另一个关于不同对象特征的重要线索,以推断更精细的通道明智的注意力。 因此,作者同时使用平均池化和最大池化特征。
利用特征的空间间关系生成空间注意图。 与通道注意不同的是,空间注意关注的“在哪里”是信息部分,与通道注意是互补的。 为了计算空间注意力,首先沿着通道轴应用平均池化和最大池化操作,并将它们连接起来以生成有效的特征描述符。 沿着通道轴应用池操作可以有效地突出显示信息区域。 在连接的特征描述符上,应用卷积层生成空间注意映射Ms(F)∈RH×W,该映射编码强调或抑制的位置。


论文源代码
import torch
import torch.nn.functional as F
import torch.nn as nnclass ChannelAttention(nn.Module):def __init__(self, in_channels, ratio=16):super(ChannelAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc = nn.Sequential(nn.Conv2d(in_channels, in_channels // ratio, 1, bias=False),nn.ReLU(inplace=True),nn.Conv2d(in_channels // ratio, in_channels, 1, bias=False)) self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = self.fc(self.avg_pool(x))max_out = self.fc(self.max_pool(x))out = avg_out + max_outout = self.sigmoid(out)return out * xclass SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()assert kernel_size in (3, 7), 'kernel size must be 3 or 7'padding = 3 if kernel_size == 7 else 1self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)out = torch.cat([avg_out, max_out], dim=1)out = self.sigmoid(self.conv1(out))return out * xclass CBAM(nn.Module):def __init__(self, in_channels, ratio=16, kernel_size=3):super(CBAM, self).__init__()self.channelattention = ChannelAttention(in_channels, ratio=ratio)self.spatialattention = SpatialAttention(kernel_size=kernel_size)def forward(self, x):x = self.channelattention(x)x = self.spatialattention(x)return x
改进思路
1.通道注意力独立分支与批归一化
使用独立的FC层处理平均池化和最大池化,增强表达能力。
在FC层之间加入批归一化,加速训练收敛。
class ChannelAttention(nn.Module):def __init__(self, in_channels, ratio=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)# 独立的全连接层分支self.fc_avg = nn.Sequential(nn.Conv2d(in_channels, in_channels//ratio, 1, bias=False),nn.BatchNorm2d(in_channels//ratio), # 添加BNnn.ReLU(inplace=True),nn.Conv2d(in_channels//ratio, in_channels, 1, bias=False),nn.BatchNorm2d(in_channels) # 输出层也可以考虑BN)self.fc_max = nn.Sequential(nn.Conv2d(in_channels, in_channels//ratio, 1, bias=False),nn.BatchNorm2d(in_channels//ratio),nn.ReLU(inplace=True),nn.Conv2d(in_channels//ratio, in_channels, 1, bias=False),nn.BatchNorm2d(in_channels))self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = self.fc_avg(self.avg_pool(x))max_out = self.fc_max(self.max_pool(x))out = self.sigmoid(avg_out + max_out)return x * out
2.空间注意力深度增强
使用多层卷积增加非线性。
引入残差连接提升梯度流动。
class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()padding = kernel_size // 2self.conv = nn.Sequential(nn.Conv2d(2, 32, kernel_size, padding=padding, bias=False),nn.BatchNorm2d(32),nn.ReLU(inplace=True),nn.Conv2d(32, 1, kernel_size, padding=padding, bias=False), # 深层卷积nn.BatchNorm2d(1))self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)cat = torch.cat([avg_out, max_out], dim=1)out = self.conv(cat) + cat.mean(dim=1, keepdim=True) # 残差连接return x * self.sigmoid(out)
3.动态比例调整、参数初始化优化、并行注意力融合
import torch
import torch.nn as nn
import torch.nn.functional as F# --------------------------
# 改进3:动态比例调整
# --------------------------
def get_ratio(in_channels, min_ratio=16):"""动态计算压缩比例,防止通道数过小时出现除零错误"""return max(in_channels // min_ratio, 4) # 保证最小分割比例为4# --------------------------
# 改进4:参数初始化优化
# --------------------------
def init_weights(m):"""He初始化 + 零偏置初始化"""if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)# --------------------------
# 改进1/3:通道注意力(包含动态比例调整)
# --------------------------
class ChannelAttention(nn.Module):def __init__(self, in_channels):super().__init__()ratio = get_ratio(in_channels) # 动态计算ratioself.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc = nn.Sequential(nn.Conv2d(in_channels, ratio, 1, bias=False),nn.BatchNorm2d(ratio),nn.ReLU(),nn.Conv2d(ratio, in_channels, 1, bias=False),nn.BatchNorm2d(in_channels))self.sigmoid = nn.Sigmoid()self.apply(init_weights) # 应用参数初始化def forward(self, x):avg_out = self.fc(self.avg_pool(x))max_out = self.fc(self.max_pool(x))weight = self.sigmoid(avg_out + max_out)return x * weight# --------------------------
# 改进1:空间注意力
# --------------------------
class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()padding = kernel_size // 2self.conv = nn.Sequential(nn.Conv2d(2, 32, kernel_size, padding=padding, bias=False),nn.BatchNorm2d(32),nn.ReLU(),nn.Conv2d(32, 1, kernel_size, padding=padding, bias=False),nn.BatchNorm2d(1))self.sigmoid = nn.Sigmoid()self.apply(init_weights) # 应用参数初始化def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)cat = torch.cat([avg_out, max_out], dim=1)weight = self.sigmoid(self.conv(cat))return x * weight# --------------------------
# 改进5:并行注意力融合
# --------------------------
class CBAM(nn.Module):def __init__(self, in_channels, kernel_size=7):super().__init__()self.ca = ChannelAttention(in_channels)self.sa = SpatialAttention(kernel_size)self.apply(init_weights) # 整个模块应用初始化def forward(self, x):# 并行计算通道注意力和空间注意力ca_out = self.ca(x) # 通道注意力分支sa_out = self.sa(x) # 空间注意力分支# 残差连接融合 (原始特征 + 通道特征 + 空间特征)return x + ca_out + sa_out
相关文章:
(ECCV2018)CBAM改进思路
论文链接:https://arxiv.org/abs/1807.06521 论文题目:CBAM: Convolutional Block Attention Module 会议:ECCV2018 论文方法 利用特征的通道间关系生成了一个通道注意图。 由于特征映射的每个通道被认为是一个特征检测器,通道…...
Python脚本,音频格式转换 和 视频格式转换
一、音频格式转换完整代码 from pydub import AudioSegment import osdef convert_audio(input_dir, output_dir, target_format):if not os.path.exists(output_dir):os.makedirs(output_dir)for filename in os.listdir(input_dir):if filename.endswith((.mp3, .wav, .ogg)…...
基于Spring Boot的高校就业招聘系统的设计与实现(LW+源码+讲解)
专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...
强化学习(赵世钰版)-学习笔记(4.值迭代与策略迭代)
本章是整个课程中,算法与方法的第一章,应该是最简单的入门方法。 上一章讲到了贝尔曼最优方程,其目的是计算出最优状态值,从而确定对应的最优策略。 而压缩映射理论推出了迭代算法 对初始值V0赋一个随机的初始值,算法最…...
Cursor安装配置
1.安装 通过网盘分享的文件:Cursor Setup 0.45.11 - x64.exe 链接: 百度网盘 请输入提取码 提取码: 6juv 2. 配置 选择AI工具的语言 输入AI工具的语言为 "中文" ,输入完语言之后,直接点击 "Continue" 下一步&#x…...
相机几何:从三维世界到二维图像的映射
本系列课程将带领读者开启一场独特的三维视觉工程之旅。我们不再止步于教科书式的公式推导,而是聚焦于如何将抽象的数学原理转化为可落地的工程实践。通过解剖相机的光学特性、构建成像数学模型、解析坐标系转换链条,直至亲手实现参数标定代码࿰…...
【GoTeams】-5:引入Docker
本文目录 1. Dokcer-compose回顾下Docker知识编写docker-compose.yaml运行docker 2. 部署go服务编写dockerfile 1. Dokcer-compose 这里简单先用一下win版本的Docker,后期开发好了部署的时候再移植到服务器下进行docker部署。 输入命令docker-compose version 就可…...
基金股票期权期货投资方式对比
以下是基金、股票、期权和期货的详细对比分析,涵盖定义、核心特点、优势、劣势、适用场景及相互区别: 一、基金 定义 基金是通过集合投资者的资金,由专业管理人(基金经理)进行多元化投资的金融工具。根据投资标的可分…...
大模型AI平台DeepSeek 眼中的SQL2API平台:QuickAPI、dbapi 和 Magic API 介绍与对比
目录 1 QuickAPI 介绍 2 dbapi 介绍 3 Magic API 介绍 4 简单对比 5 总结 统一数据服务平台是一种低代码的方式,实现一般是通过SQL能直接生成数据API,同时能对产生的数据API进行全生命周期的管理,典型的SQL2API的实现模式。 以下是针对…...
K8S学习之基础十九:k8s的四层代理Service
K8S四层代理Service 四层负载均衡Service 在k8s中,访问pod可以通过ip端口的方式,但是pod是由生命 周期的,pod在重启的时候ip地址往往会发生变化,访问pod就需要新的ip地址,这样就会很麻烦,每次pod地址改变就…...
揭开AI-OPS 的神秘面纱 第六讲 AI 模型服务层 - 开源模型选型与应用 (时间序列场景|图神经网络场景)
时间序列场景 AI 模型服务层 - 开源模型选型与应用 (时间序列场景) 在 AI-Ops 中,时间序列数据分析主要应用于以下场景: 指标预测: 预测 Metrics 指标 (例如 CPU 使用率、内存使用率、网络流量、请求延迟等) 的未来趋势,用于容量规划、资源调度、异常检测等。异常检测: 检…...
在Dify中访问Gemini等模型代理设置指南
问题背景 Google Gemini模型可纯免费使用,且性能也相当不错,一般个人使用或研究足够。但在在国内访问,需设置代理。在Docker部署Dify时,虽然按官方文档介绍设置代理环境变量,但实测发现并不生效。我们通过研究试验解决…...
MySQL的安装以及数据库的基本配置
MySQL的安装及配置 MySQL的下载 选择想要安装的版本,点击Download下载 Mysql官网下载地址: https://downloads.mysql.com/archives/installer/ MySQL的安装 选择是自定义安装,所以直接选择“Custom”,点击“Next” …...
设备树的组成
根节点下含有 compatile 属性的子节点 含有特定 compatile 属性的节点的子节点 如果一个节点的 compatile 属性,它的值是这 4 者之一:"simple-bus","simple-mfd","isa","arm,amba-bus", 那 么 它 的 子结点 (…...
C++入门——输入输出、缺省参数
C入门——输入输出、缺省参数 一、C标准库——命名空间 std C标准库std是一个命名空间,全称为"standard",其中包括标准模板库(STL),输入输出系统,文件系统库,智能指针与内存管理&am…...
deepseek 本地部署
deepseek 本地部署 纯新手教学,手把手5分钟带你在本地部署一个私有的deepseek,再也不用受网络影响。流畅使用deepseek!!! 如果不想看文章,指路:Deep seek R1本地部署 小白超详细教程 ࿰…...
[网络爬虫] 动态网页抓取 — Selenium 入门操作
🌟想系统化学习爬虫技术?看看这个:[数据抓取] Python 网络爬虫 - 学习手册-CSDN博客 0x01:WebDriver 类基础属性 & 方法 为模仿用户真实操作浏览器的基本过程,Selenium 的 WebDriver 模块提供了一个 WebDriver 类…...
HTML 超链接(简单易懂较详细)
在 HTML 中,超链接是通过 <a> 标签(anchor tag)创建的。超链接允许用户通过点击文本、图像或其他元素跳转到另一个网页、文件或页面的特定部分。本文将详细介绍 HTML 超链接的语法、属性和应用场景。 一、基本语法 <a href"U…...
rpc和proto
rpc全称远程过程控制,说白了是一种对信息发送和接收的规则编写方法,来自google,这些规则会以protobuf代码存到proto文件里。我以autoGen中agent_worker.proto为例,大概长这样 syntax "proto3";package agents;option …...
OPENGLPG第九版学习 -颜色、像素和片元 PART1
文章目录 4.1 基本颜色理论4.2 缓存及其用途颜色缓存深度缓存 / z缓存 / z-buffer模板缓存 4.2.1 缓存的清除4.2.2 缓存的掩码 4.3 颜色与OpenGL4.3.1 颜色的表达与OpenGL4.3.2 平滑数据插值 4.4 片元的测试与操作4.4.1 剪切测试4.4.2 多重采样的片元操作4.4.3 模板测试模板查询…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)
目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 编辑编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...
