【Pandas】pandas Series compare
# Pandas2.2 Series
## Computations descriptive stats
|方法|描述|
|-|:-------|
|Series.compare(other[, align_axis, ...])|用于比较两个 `Series`|
### pandas.Series.compare
`pandas.Series.compare` 方法用于比较两个 `Series`,并返回一个包含差异的 `DataFrame`。该方法可以显示两个 `Series` 中哪些值不同,并且可以选择是否保留相等的值以及如何对齐数据。
#### 参数说明
- **other**:另一个 `Series` 或标量值。与当前 `Series` 进行比较的对象。
- **align_axis**:{0 or 'index', 1 or 'columns'},默认为 1。指定对齐的轴:
- 0 或 'index':按索引对齐。
- 1 或 'columns':按列对齐(对于 `Series` 来说,通常不需要更改)。
- **keep_shape**:布尔值,默认为 False。如果为 True,则返回的 `DataFrame` 将保留原始形状,即使某些位置没有差异。
- **keep_equal**:布尔值,默认为 False。如果为 True,则返回的 `DataFrame` 将包含相等的值。
- **result_names**:元组,默认为 ('self', 'other')。指定返回的 `DataFrame` 中两列的名称。
#### 示例及结果
##### 示例 1:基本用法
```python
import pandas as pd
# 创建两个 Series
s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([1, 2, 5, 6], index=['a', 'b', 'c', 'd'])
print("第一个 Series (s1):")
print(s1)
print("\n第二个 Series (s2):")
print(s2)
# 使用 compare 方法比较两个 Series
comparison = s1.compare(s2)
print("\n比较结果:")
print(comparison)
```
##### 输出结果
```
第一个 Series (s1):
a 1
b 2
c 3
d 4
dtype: int64
第二个 Series (s2):
a 1
b 2
c 5
d 6
dtype: int64
比较结果:
self other
c 3.0 5.0
d 4.0 6.0
```
在这个例子中,`compare` 方法返回了一个 `DataFrame`,其中包含 `s1` 和 `s2` 中不同的值。索引 `c` 和 `d` 的值在两个 `Series` 中不同,因此它们被显示在结果中。
##### 示例 2:保留形状 (`keep_shape=True`)
```python
import pandas as pd
# 创建两个 Series
s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([1, 2, 5, 6], index=['a', 'b', 'c', 'd'])
# 使用 compare 方法比较两个 Series,并保留形状
comparison_keep_shape = s1.compare(s2, keep_shape=True)
print("\n比较结果 (保留形状):")
print(comparison_keep_shape)
```
##### 输出结果
```
比较结果 (保留形状):
self other
a NaN NaN
b NaN NaN
c 3.0 5.0
d 4.0 6.0
```
在这个例子中,`keep_shape=True` 参数使得返回的 `DataFrame` 保留了原始形状,即使某些位置没有差异。
##### 示例 3:保留相等的值 (`keep_equal=True`)
```python
import pandas as pd
# 创建两个 Series
s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([1, 2, 5, 6], index=['a', 'b', 'c', 'd'])
# 使用 compare 方法比较两个 Series,并保留相等的值
comparison_keep_equal = s1.compare(s2, keep_equal=True)
print("\n比较结果 (保留相等的值):")
print(comparison_keep_equal)
```
##### 输出结果
```
比较结果 (保留相等的值):
self other
c 3 5
d 4 6
```
在这个例子中,`keep_equal=True` 参数使得返回的 `DataFrame` 包含了相等的值。
#### 注意事项
- `compare` 方法主要用于比较两个 `Series` 的差异,并返回一个 `DataFrame`,其中包含不同的值。
- 如果需要比较更复杂的结构(如 `DataFrame`),可以使用 `DataFrame.compare` 方法。
- `keep_shape` 和 `keep_equal` 参数可以根据需求调整返回的结果形状和内容。
#### 总结
`pandas.Series.compare` 方法是一个强大的工具,用于比较两个 `Series` 并返回差异。通过调整参数,可以灵活地控制返回结果的形状和内容,适用于各种数据分析场景。
相关文章:
【Pandas】pandas Series compare
# Pandas2.2 Series ## Computations descriptive stats |方法|描述| |-|:-------| |Series.compare(other[, align_axis, ...])|用于比较两个 Series| ### pandas.Series.compare pandas.Series.compare 方法用于比较两个 Series,并返回一个包含差异的 DataFram…...
基于DeepSeek的智慧医药系统(源码+部署教程)
运行环境 智慧医药系统运行环境如下: 前端: HTMLCSS后端:Java AIGCDeepseekIDE工具:IDEA技术栈:Springboot HTMLCSS MySQL 主要角色 智慧医药系统主要分为两个角色。 游客 尚未进行注册和登录。具备登录注册、…...
如何为服务设置合理的线程数
1. 首先,要确定最大线程数的限制因素。通常,线程数量受限于内存、CPU和操作系统限制。比如,每个线程都需要一定的栈内存,默认情况下Java线程的栈大小是1MB(64位系统可能更大),所以如果内存不足&…...
Unity--Cubism Live2D模型使用
了解LIVE2D在unity的使用--前提记录 了解各个组件的作用 Live2D Manuals & Tutorials 这些文件都是重要的控制动画参数的 Cubism Editor是编辑Live2D的工具,而导出的数据的类型,需要满足以上的条件 SDK中包含的Cubism的Importer会自动生成一个Pref…...
Vue.js 3 的设计思路:从声明式UI到高效渲染机制
目录 一、声明式UI与虚拟DOM的灵活性 二、渲染器:虚拟DOM到真实DOM的桥梁 三、组件的本质与实现 四、编译与运行时的协同优化 五、性能与可维护性的权衡 总结 Vue.js 3 作为新一代前端框架,其设计理念在声明式UI描述、虚拟DOM优化、组件化架构…...
部署前后端项目
部署项目 liunx 软件安装 软件安装方式 在Linux系统中,安装软件的方式主要有四种,这四种安装方式的特点如下: 建议nginx、MySQL、Redis等等使用docker安装,会很便捷,这里只演示JDK、ngxin手动的安装 安装JDK 上述我…...
Vue Diff算法原理深度解析:如何高效更新虚拟DOM?
文章目录 1. 为什么需要Diff算法?2. Diff算法核心原则3. 核心流程图解4. 核心代码实现(简化版)5. Key的重要性示例6. 算法优化策略7. 时间复杂度优化8. 与其他框架的对比9. 总结 1. 为什么需要Diff算法? 在Vue的响应式系统中&…...
Dify平台部署记录
安装dify项目 官网地址:http://difyai.com/ github地址:https://github.com/langgenius/dify 下载项目: git clone https://github.com/langgenius/dify.git下载过慢,直接访问网页下载zip压缩包: 解压,…...
ArcGIS Pro中字段的新建方法与应用
一、引言 在地理信息系统(GIS)的数据管理和分析过程中,字段操作起着至关重要的作用。 无论是进行地图制作、空间分析还是数据统计,字段都是承载属性信息的基本单元。 ArcGIS Pro作为一款功能强大的GIS软件,为用户提…...
Git 的基本概念和使用方式。
Git 是一种分布式版本控制系统,用于跟踪文件和目录的变化。Git 的基本概念和使用方式如下: 仓库(Repository):Git 仓库是用来存储项目文件和历史记录的地方。一个 Git 仓库包含项目的文件、版本记录和配置信息。 提交…...
贪心算法--
1.柠檬水找零 link:860. 柠檬水找零 - 力扣(LeetCode) code class Solution { public:bool lemonadeChange(vector<int>& bills) {// 贪心算法, 优先花出大面额bill, 尽可能保护小面额billint five 0, ten 0;// 不…...
mysql下载与安装、关系数据库和表的创建
一、mysql下载: MySQL获取: 官网:www.mysql.com 也可以从Oracle官方进入:https://www.oracle.com/ 下载地址:https://downloads.mysql.com/archives/community/ 选择对应的版本和对应的操作系统&a…...
万字技术指南STM32F103C8T6 + ESP8266-01 连接 OneNet 平台 MQTT/HTTP
此博客为一份详细的指南,涵盖 STM32F103C8T6 通过 ESP8266-01 连接 OneNet 平台,并使用 MQTT/HTTP 进行数据通信的完整流程。这份文档包括: OneNet 平台的介绍与功能概览在 OneNet 上创建和配置设备的方法STM32CubeIDE 的开发环境搭建ESP826…...
MWC 2025 | 紫光展锐联合移远通信推出全面支持R16特性的5G模组RG620UA-EU
2025年世界移动通信大会(MWC 2025)期间,紫光展锐联合移远通信,正式发布了全面支持5G R16特性的模组RG620UA-EU,以强大的灵活性和便捷性赋能产业。 展锐芯加持,关键性能优异 RG620UA-EU模组基于紫光展锐V62…...
PyCharm 接入 DeepSeek、OpenAI、Gemini、Mistral等大模型完整版教程(通用)!
PyCharm 接入 DeepSeek、OpenAI、Gemini、Mistral等大模型完整版教程(通用)! 当我们成功接入大模型时,可以选中任意代码区域进行解答,共分为三个区域,分别是选中区域、提问区域以及回答区域,我…...
小智智能体语言大模型硬件软件开发
硬件可以参考ESP32-AI语音助手 - 立创开源硬件平台 单片机使用esp32s3,可以直接替换,但是引脚IO有变化,而且esp32s3 io35 36 37不能用,所以得飞一条线,原先接在io35的飞到io4上。如果不飞线的话系统一直重启 软件使用…...
网络tcp协议设置,网络tcp协议设置不了
网络TCP协议的设置通常涉及到多个方面,包括IP地址、子网掩码、默认网关、DNS服务器等参数的配置,以及TCP/IP协议栈本身的配置。如果遇到网络TCP协议设置不了的问题,可能是由多种原因导致的。以下是一些可能的原因及解决方法: 一、…...
配置Hadoop集群
Hadoop的运行模式 本地运行:在一台单机上运行,没有分布式文件系统,直接读写本地操作系统的文件系统。特点:不对配置文件进行修改,Hadoop 不会启动 伪分布式:也是在一台单机上运行,但用不同的 …...
模型微调-基于LLaMA-Factory进行微调的一个简单案例
模型微调-基于LLaMA-Factory进行微调的一个简单案例 1. 租用云计算资源2. 拉取 LLaMa-Factory3. 安装依赖环境4. 启动 LLaMa-Factory 界面5. 从 Huggingface 下载模型6. 模型验证7. 模型微调 1. 租用云计算资源 以下示例基于 AutoDL 云计算资源。 在云计算平台选择可用的云计…...
设置重定向不缓存
response.setHeader(“Cache-Control”, “no-cache, no-store, must-revalidate”); response.setHeader(“Pragma”, “no-cache”);response.setHeader(“Expires”, “0”);response.sendRedirect(newURL); response.setContentType(“text/html;charsetUTF-8”); PrintWr…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
goreplay
1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具,可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长,测试它所需的工作量也会呈指数级增长。GoRepl…...
数据分析六部曲?
引言 上一章我们说到了数据分析六部曲,何谓六部曲呢? 其实啊,数据分析没那么难,只要掌握了下面这六个步骤,也就是数据分析六部曲,就算你是个啥都不懂的小白,也能慢慢上手做数据分析啦。 第一…...
SpringCloud优势
目录 完善的微服务支持 高可用性和容错性 灵活的配置管理 强大的服务网关 分布式追踪能力 丰富的社区生态 易于与其他技术栈集成 完善的微服务支持 Spring Cloud 提供了一整套工具和组件来支持微服务架构的开发,包括服务注册与发现、负载均衡、断路器、配置管理等功能…...
