2024年群智能SCI1区TOP:混沌可行性恢复粒子群算法CEPSO,深度解析+性能实测
目录
- 1.摘要
- 2.改进策略
- 3.结果展示
- 4.参考文献
- 5.代码获取
1.摘要
本文研究了解决二阶段非线性固定费用运输问题(Two-stage NFCTP),该问题的特点是每条运输弧线都与固定费用和与运输量的平方成正比的变量费用相关联。由于涉及固定费用和非线性组件,问题被归类为NP-hard问题,因此本文提出了混沌可行性恢复粒子群算法(CEPSO),该算法引入非线性自适应惯性权重和加速度系数,以改善搜索过程中的探索和开发能力;集成十种混沌映射到加速度系数,进一步提升优化性能;采用可行性恢复机制,包括约束遵循调整和比例调整程序,确保生成的解始终满足可行性要求。
2.改进策略
位置更新
在PSO算法中,速度更新方程中的惯性权重 w w w和加速度系数 c 1 , c 2 c_1,c_2 c1,c2是引导搜索向最优解靠近的关键因素。本研究对这两个关键参数进行了改进:
{ c 1 ( t ) = c m a x − ( c m a x − c m i n ) ∗ ( t / t m a x ) ϕ 1 , c 2 ( t ) = c m i n + ( c m a x − c m i n ) ∗ ( t / t m a x ) ϕ 1 , ω ( t ) = ω m a x − ( ω m a x − ω m i n ) ∗ ( t / t m a x ) ϕ 2 , \begin{cases} c_1(t)=c_{max}-(c_{max}-c_{min})*(t/t_{max})^{\phi_1}, \\ c_2(t)=c_{min}+(c_{max}-c_{min})*(t/t_{max})^{\phi_1}, \\ \omega(t)=\omega_{max}-(\omega_{max}-\omega_{min})*(t/t_{max})^{\phi_2}, & \end{cases} ⎩ ⎨ ⎧c1(t)=cmax−(cmax−cmin)∗(t/tmax)ϕ1,c2(t)=cmin+(cmax−cmin)∗(t/tmax)ϕ1,ω(t)=ωmax−(ωmax−ωmin)∗(t/tmax)ϕ2,
为了进一步增强所提算法的优化能力,论文将混沌映射引入了第一步中定义的加速度系数。混沌映射的引入为算法增加了锯齿形的特性,从而提升了搜索过程的多样性和跳跃性,归一化:
n o r m c h m ( t ) = ( c h m ( t ) − a ) × ( c h V a l u e ( t ) − 0 ) b − a + 0 , = ( c h m ( t ) − a ) × c h V a l u e ( t ) b − a , \begin{gathered} norm_{ch_{m}}(t)=\frac{(ch_{m}(t)-a)\times(chValue(t)-0)}{b-a}+0, \\ =\frac{(ch_{m}(t)-a)\times chValue(t)}{b-a}, \end{gathered} normchm(t)=b−a(chm(t)−a)×(chValue(t)−0)+0,=b−a(chm(t)−a)×chValue(t),
m m m表示混沌映射的索引, c h V a l u e ( t ) chV alue(t) chValue(t)表示归一化范围且随着每次迭代按比例减小:
c h V a l u e ( t ) = c h M a x − ( c h M a x − c h M i n ) ∗ ( t / t m a x ) chValue(t)=chMax-(chMax-chMin)*(t/t_{max}) chValue(t)=chMax−(chMax−chMin)∗(t/tmax)
因此,混沌加速系数:
{ c 1 ′ ( t ) = n o r m c h m ( t ) + c 1 ( t ) , c 2 ′ ( t ) = n o r m c h m ( t ) + c 2 ( t ) . \begin{cases} c_{1}^{\prime}(t)=norm_{ch_{m}}(t)+c_{1}(t), \\ c_{2}^{\prime}(t)=norm_{ch_{m}}(t)+c_{2}(t). & \end{cases} {c1′(t)=normchm(t)+c1(t),c2′(t)=normchm(t)+c2(t).
将混沌映射积分到加速度系数后,CEPSO中每个粒子更新后的速度和位置更新:
{ v i , k ( t + 1 ) = ω ( t ) ⋅ v i , k ( t ) + c 1 ′ ( t ) r 1 ⋅ ( x p b e s t l ( t ) − x i , k ( t ) ) + c 2 ′ ( t ) r 2 ⋅ ( x g b e s t ( t ) − x i , k ( t ) ) , x i , k ( t + 1 ) = x i , k ( t ) + v i , k ( t + 1 ) , \begin{cases} v_{i,k}(t+1) \\ =\omega(t)\cdot v_{i,k}(t)+c_1^{\prime}(t)r_1\cdot(x_{pbest_l}(t)-x_{i,k}(t))+c_2^{\prime}(t)r_2\cdot(x_{gbest}(t)-x_{i,k}(t)), \\ x_{i,k}(t+1)=x_{i,k}(t)+v_{i,k}(t+1), & \end{cases} ⎩ ⎨ ⎧vi,k(t+1)=ω(t)⋅vi,k(t)+c1′(t)r1⋅(xpbestl(t)−xi,k(t))+c2′(t)r2⋅(xgbest(t)−xi,k(t)),xi,k(t+1)=xi,k(t)+vi,k(t+1),
伪代码
3.结果展示
4.参考文献
[1] Chauhan D, Rani D. A feasibility restoration particle swarm optimizer with chaotic maps for two-stage fixed-charge transportation problems[J]. Swarm and Evolutionary Computation, 2024, 91: 101776.
5.代码获取
相关文章:

2024年群智能SCI1区TOP:混沌可行性恢复粒子群算法CEPSO,深度解析+性能实测
目录 1.摘要2.改进策略3.结果展示4.参考文献5.代码获取 1.摘要 本文研究了解决二阶段非线性固定费用运输问题(Two-stage NFCTP),该问题的特点是每条运输弧线都与固定费用和与运输量的平方成正比的变量费用相关联。由于涉及固定费用和非线性组…...
ORACLE EBS数据库RELINK方式搭建克隆环境
ORACLE EBS系统的数据库,一般都安装了很多特定功能的小补丁来解决特定的BUG;因此对于已经安装好的系统,想要克隆一套测试环境、搭建一个新的备机做测试等,如果按照生产环境标准,则需要安装大量补丁,带来很大…...

第十五届蓝桥杯省赛电子类单片机学习过程记录(客观题)
客观试题: 01.典型的BUCK电源电路包含哪些关键器件(ABCD) A. 电容 B. 二极管 C. 电感 D. MOSFET 解析: 典型的 BUCK 电源电路是一种降压型的直流-直流转换电路,它包含以下关键器件: A.电容:电容在电路中起到滤波的作用。输入电容用于平滑输入电压的波动,减少电源噪声对…...

使用 invideo ai 实现文生视频
https://ai.invideo.io 然后选ai生成视频 输入描述,点击生成 就可以得到视频了,可以下载...
5G技术与物联网融合:未来智慧城市的基石
一、智慧城市演进:从概念到落地的技术革命 1.1 全球智慧城市发展现状 2023年全球智慧城市市场规模突破$1.2万亿美元,中国以35%的占比领跑市场(数据来源:IDC)。典型应用成效: 交通效率:新加坡…...
蓝桥杯备赛-差分-重新排序
问题描述 给定一个数组 AA 和一些查询 Li,RiLi,Ri, 求数组中第 LiLi 至第 RiRi 个元素之和。 小蓝觉得这个问题很无聊, 于是他想重新排列一下数组, 使得最终每个查 询结果的和尽可能地大。小蓝想知道相比原数组, 所有查询结果的总和最多可 以增加多少? 输入格式 输…...

使用DeepSeek+蓝耘快速设计网页简易版《我的世界》小游戏
前言:如今,借助先进的人工智能模型与便捷的云平台,即便是新手开发者,也能开启创意游戏的设计之旅。DeepSeek 作为前沿的人工智能模型,具备强大的功能与潜力,而蓝耘智算云平台则为其提供了稳定高效的运行环境…...

基于Matlab设计GUI图像处理交互界面
Image-Processing-GUI 项目说明 本博文提供了完整的代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。 本项目是《Matlab实践》中图像处理软件题目,本项目实现的具体内容如下 基于Matlab设计GUI交互界面图像的…...
javase集合框架List篇
一、Vector和ArrayList、LinkedList联系和区别,分别的使用场景 ArrayList:底层是数组实现,线程不安全,查询和修改非常快,但是增加和删除慢 LinkedList: 底层是双向链表,线程不安全,查询和修改…...

浙江大学:DeepSeek行业应用案例集(153页)(文末可下载PDF)
浙江大学:DeepSeek行业应用案例集(153页)(文末可下载PDF) 全文链接:浙江大学:DeepSeek行业应用案例集(153页)(文末可下载PDF) | AI探金 全文链接&…...

【 IEEE出版 | 快速稳定EI检索 | 往届已EI检索】2025年储能及能源转换国际学术会议(ESEC 2025)
重要信息 主会官网:www.net-lc.net 【论文【】投稿】 会议时间:2025年5月9-11日 会议地点:中国-杭州 截稿时间:见官网 提交检索:IEEE Xplore, EI Compendex, Scopus 主会NET-LC 2025已进入IEEE 会议官方列表!&am…...

电路原理(电容 集成电路NE555)
电容 1.特性:充放电,隔直流,通交流 2.电容是通过聚集正负电荷来存储电能的 3.电容充放电过程可等效为导通回路 4.多电容并联可以把容量叠加,但是多电容串联就不会,只会叠加电容的耐压值。 6.电容充放电时相当于通路&a…...

记录小白使用 Cursor 开发第一个微信小程序(一):注册账号及下载工具(250308)
文章目录 记录小白使用 Cursor 开发第一个微信小程序(一):注册账号及下载工具(250308)一、微信小程序注册摘要1.1 注册流程要点 二、小程序发布流程三、下载工具 记录小白使用 Cursor 开发第一个微信小程序(…...
哪些业务场景更适合用MongoDB?何时比MySQL/PostgreSQL好用?
哪些业务场景更适合用MongoDB?何时比MySQL/PostgreSQL好用? 就像淘宝的个性化推荐需要灵活调整商品标签,MongoDB这种"变形金刚"式的数据库,在处理以下三类中国特色业务场景时更具优势: 一、动态数据就像&q…...
【从零开始学习计算机科学】计算机组成原理(二)信息表示与编码
【从零开始学习计算机科学】计算机组成原理(二)信息表示与编码 信息表示与编码进位计数制十进制(Decimal)二进制(Binary)十六进制(Hexadecimal)进位计数制之间的转换常用的信息分类与表示定点表示无符号数的编码正整数的表示原码表示法定点小数的原码表示定点整数的原码…...
【从零开始学习计算机科学】操作系统(五)处理器调度
【从零开始学习计算机科学】操作系统(五)处理器调度 处理器调度一些简单的短程调度算法的思路先来先服务(First-Come-First-Served,FCFS)优先级调度及其变种最短作业优先调度算法(SJF)--非抢占式最短作业优先调度算法(SJF)--抢占式最高响应比优先调度算法轮转调度算法…...
Flink之水印(watermark)的补充理解
水印(Watermark):用于事件时间处理,标记数据流的进度,解决乱序和延迟问题,触发窗口计算 一、Flink 水印的作用 处理乱序事件 水印(Watermark)是 Flink 用于处理事件时间&…...
数据结构全解析:从线性到非线性,优缺点与应用场景深度剖析
1. 线性数据结构 (1)数组(Array)(适合静态数据) 优点: 随机访问高效:通过索引可以直接访问元素,时间复杂度为 O(1)。 内存连续:数组在内存中是连续存储的&…...
《使用 Python Flask + MySQL + ECharts 构建销售数据看板》实战案例笔记
《使用 Python Flask + MySQL + ECharts 构建销售数据看板》实战案例笔记 技术栈说明 后端:Python 3.10 + Flask 框架数据库:MySQL前端:ECharts 5.4 + HTML/CSS数据可视化:柱状图 / 折线图 / 饼图 / 雷达图项目结构 project/ ├── server.py # 后端服务 └──…...
StringBuilder和StringJoiner的运用
package test12; import java.util.Scanner; import java.util.StringJoiner;public class Test { public static void main(String[] args) {/* String str "你玩的真好,下次别玩了,TMD,CNM";String[] arr {"TMD", &…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...