【人工智能】对贝叶斯网络进行吉布斯采样

问题
现要求通过吉布斯采样方法,利用该网络进行概率推理(计算 P(R=T|S=F, W=T)、P2(C=F|W=T)的概率值)。
原理
吉布斯采样的核心思想为一维一维地进行采样,采某一个维度的时候固定其他的维度,在本次实验中,假定上一个采样的样本为<C(True)、S(False)、R(True)、W(False)>,此时对C维度进行采样,吉布斯采样将会利用 P(C|S=False,R=True,W=False)的分布得到一个新的 C的值(False),并将该值代替原先的值产生一个新的样本<C(False)、S(False)、R(True)、W(False)>。
给定分布π(C,S,R,W)
step 1. t=0 时刻产生一个初始状态<C0,S0,R0,W0>,count = 0,采样序列 x=[<C0,S0,R0,W0>]
step 2. 从条件概率分布 P(C|S0,R0)采样得到<C1,S0,R0,W0>,加入到 x[C 已知跳转下一步]
step 3. 从条件概率分布 P(S|C1,R0,W0)采样得到<C1,S1,R0,W0>,加入到 x[S 已知跳转下一步]
step 4. 从条件概率分布 P(R|C1,S1,W0)采样得到<C1,S1,R1,W0>,加入到 x[R 已知跳转下一步]
step 5. 从条件概率分布 P(W|S1,R1)采样得到<C1,S1,R1,W1>,加入到 x[W 已知跳转下一步]
step 6. count = count + 1,如果 count < 指定采样次数跳转到 step2
step 7. 在采样序列中统计满足条件的样本数量,除以总采样数即为所求。
数据结构使用一个 4*2*2*2*2 的矩阵 M 用于存储条件概率分布。如 M[0,:,0,0,0]即表示
P(C|S=False,R=False,W=False)的分布,M[0,:,1,0,0]表示P(C|S=True,R=False,W=False)的分布。该矩阵可通过给定的贝叶斯网络进行构建。
解答
# -*- coding:utf-8 -*-# Gibbs samplingimport numpy as np
import copyclass Gibbs:def __init__(self,query_id=1):self.x = []self.query_id = query_idassert query_id == 1 or query_id ==2self.tran_matrix = np.zeros((4,2,2,2,2))# 0 : C Cloudy# 1 : S Sprinkler# 2 : R Rain# 3 : W Wet grass# 计算条件概率分布# P(C) = 0.5self.tran_matrix[0] = 0.5 # P(C) = 0.5# P(S|C=T) = 0.1,P(S|C=F) = 0.5self.tran_matrix[1,1,0,:,:] = self.tran_matrix[0,1,0,:,:] * (1-0.1)self.tran_matrix[1,1,1,:,:] = self.tran_matrix[0,1,1,:,:] * 0.1self.tran_matrix[1,0,0,:,:] = self.tran_matrix[0,0,0,:,:] * (1-0.5)self.tran_matrix[1,0,1,:,:] = self.tran_matrix[0,0,1,:,:] * 0.5# P(R|C=T) = 0.8,P(R|C=F) = 0.2self.tran_matrix[2,1,:,0,:] = self.tran_matrix[1,1,:,0,:] * (1-0.8)self.tran_matrix[2,1,:,1,:] = self.tran_matrix[1,1,:,1,:] * 0.8self.tran_matrix[2,0,:,0,:] = self.tran_matrix[1,0,:,0,:] * (1-0.2)self.tran_matrix[2,0,:,1,:] = self.tran_matrix[1,0,:,1,:] * 0.2# P(W|S=T,R=T) = 0.99, P(W|S=T,R=F) = 0.9# P(W|S=F,R=T) = 0.9, P(W|S=F,R=F) = 0self.tran_matrix[3,:,1,1,0] = self.tran_matrix[2,:,1,1,0] * (1-0.99)self.tran_matrix[3,:,1,1,1] = self.tran_matrix[2,:,1,1,1] * 0.99self.tran_matrix[3,:,1,0,0] = self.tran_matrix[2,:,1,0,0] * (1-0.9)self.tran_matrix[3,:,1,0,1] = self.tran_matrix[2,:,1,0,1] * 0.9self.tran_matrix[3,:,0,1,0] = self.tran_matrix[2,:,0,1,0] * (1-0.9)self.tran_matrix[3,:,0,1,1] = self.tran_matrix[2,:,0,1,1] * 0.9self.tran_matrix[3,:,0,0,0] = self.tran_matrix[2,:,0,0,0] * (1-0)self.tran_matrix[3,:,0,0,1] = self.tran_matrix[2,:,0,0,1] * 0self.tran_matrix[0] = self.tran_matrix[3] / (self.tran_matrix[3].sum(axis=0,keepdims=True) + 1e-9)self.tran_matrix[1] = self.tran_matrix[3] / (self.tran_matrix[3].sum(axis=1,keepdims=True) + 1e-9)self.tran_matrix[2] = self.tran_matrix[3] / (self.tran_matrix[3].sum(axis=2,keepdims=True) + 1e-9)self.tran_matrix[3] = self.tran_matrix[3] / (self.tran_matrix[3].sum(axis=3,keepdims=True) + 1e-9)# 初始化样本if self.query_id == 1:# P(R=T|S=F,W=T)self.ignore_var_idx = [1,3] # S=F,W=Tself.x.append([True,False,True,True])else:# P(C=F|W=T)self.ignore_var_idx = [3] # W=Tself.x.append([True,False,True,True])self._sample_axis = 0self._var_num = 4def sample(self,sample_num:int):for _ in range(sample_num * (self._var_num - len(self.ignore_var_idx))):last_x = copy.copy(self.x[-1])sample_axis = self._next_sample_axis()last_x[sample_axis]=Truesample_prob = self.tran_matrix[sample_axis,int(last_x[0]),int(last_x[1]),\int(last_x[2]),int(last_x[3])]if np.random.rand() < sample_prob:last_x[sample_axis] = Trueelse:last_x[sample_axis] = Falseself.x.append(last_x)self.x = self.x[::self._var_num - len(self.ignore_var_idx)]def _next_sample_axis(self):self._sample_axis += 1self._sample_axis %= self._var_numwhile self._sample_axis in self.ignore_var_idx:self._sample_axis += 1self._sample_axis %= self._var_numreturn self._sample_axisdef calculate_ans(self):count = 0for x in self.x:if x[2] and self.query_id==1: count += 1if not x[0] and self.query_id==2: count += 1return count / len(self.x)def reset(self):self.x = self.x[:1]gibbs = Gibbs(1)
gibbs.sample(100)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(R=T|S=F,W=T)采样100次,结果为:',ans)
gibbs.sample(500)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(R=T|S=F,W=T)采样500次,结果为:',ans)
gibbs.sample(1000)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(R=T|S=F,W=T)采样1000次,结果为:',ans)gibbs = Gibbs(2)
gibbs.sample(100)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(C=F|W=T)采样100次,结果为:',ans)
gibbs.sample(500)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(C=F|W=T)采样500次,结果为:',ans)
gibbs.sample(1000)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(C=F|W=T)采样1000次,结果为:',ans)
运行结果

P(R=T|S=F, W=T)≈1
P(C=F|W=T)≈0.41
相关文章:
【人工智能】对贝叶斯网络进行吉布斯采样
问题 现要求通过吉布斯采样方法,利用该网络进行概率推理(计算 P(RT|SF, WT)、P2(CF|WT)的概率值)。 原理 吉布斯采样的核心思想为一维一维地进行采样,采某一个维度的时候固定其他的维度,在本次实验中,假…...
Java 面向对象基础
文章目录一、类和对象1. 类的定义2. 对象的使用二、对象内存图三、成员变量和局部变量四、封装1. private 关键字2. this 关键字五、构造方法六、标准类制作一、类和对象 在此之前,我们先了解两个概念,对象和类。 万物皆对象,客观存在的事物…...
RocketMQ源码(21)—ConsumeMessageConcurrentlyService并发消费消息源码
基于RocketMQ release-4.9.3,深入的介绍了ConsumeMessageConcurrentlyService并发消费消息源码。 此前我们学习了consumer消息的拉取流程源码: RocketMQ源码(18)—DefaultMQPushConsumer消费者发起拉取消息请求源码RocketMQ源码(19)—Broker处理Default…...
基于 STM32+FPGA 的多轴运动控制器的设计
运动控制器是数控机床、高端机器人等自动化设备控制系统的核心。为保证控制器的实用性、实时性和稳定 性,提出一种以 STM32 为主控制器、FPGA 为辅助控制器的多轴运动控制器设计方案。给出了运动控制器的硬件电路设计, 将 S 形加减速算法融入运动控制器&…...
《爆肝整理》保姆级系列教程python接口自动化(十三)--cookie绕过验证码登录(详解
python接口自动化(十三)--cookie绕过验证码登录(详解 简介 有些登录的接口会有验证码:短信验证码,图形验证码等,这种登录的话验证码参数可以从后台获取的(或者查数据库最直接)。获取…...
soapui + groovy 接口自动化测试
1.操作excel的groovy脚本 package pubimport jxl.* import jxl.write.Label import jxl.write.WritableWorkbookclass ExcelOperation {def xlsFiledef workbookdef writableWorkbookdef ExcelOperation(){}//设置xlsFile文件路径def ExcelOperation(xlsFile){this.xlsFile x…...
Linux内存管理(三十五):内存规整简介
源码基于:Linux5.4 0. 前言 伙伴系统以页面为单位来管理内存,内存碎片也是基于页面的,即由大量离散且不连续的页面组成的。从内核角度来看,出现内存碎片不是好事情,有些情况下物理设备需要大段的连续的物理内存,如果内核无法满足,则会发生内核错误。内存规整就是为了解…...
Java连接Redis
Jedis是Redis官方推荐的Java连接开发工具。api:https://tool.oschina.net/apidocs/apidoc?apijedis-2.1.0一、 导入包<!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency><groupId>redis.clients</groupId><…...
Python语言零基础入门教程(十六)
Python 模块 Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句。 模块让你能够有逻辑地组织你的 Python 代码段。 把相关的代码分配到一个模块里能让你的代码更好用,更易懂。 模块能定…...
SAP ERP系统SD模块常用增强之一:VA01/VA02创建或修改SO的输入检查
在SAP/ERP项目的实施中销售管理模块(SD)的创建和修改销售订单必定会有输入字段校验检查的需求,来防止业务人员录入错误或少录入数据,SAP公司也考虑到这一点,所以这方面的配置功能也非常强大,通常情况下不需…...
深度学习知识补充
候选位置(proposal) RCNN 什么时ROI? 在图像处理领域,感兴趣区域(region of interest , ROI) 是从图像中选择的一个图像区域,这个区域是你的图像分析所关注的重点。圈定该区域以便进行进一步处理。使用ROI圈定你想读的目标&…...
Vue笔记(1)——数据代理与绑定
一、初始Vue 1.想让Vue工作,就必须创建一个Vue实例,且要传入一个配置对象; 2.root容器里的代码依然符合html规范,只不过混入了一些特殊的Vue语法; 3.root容器里的代码被称为【Vue模板】; 4.Vue实例和容器是…...
LeetCode题目笔记——2563. 统计公平数对的数目
文章目录题目描述题目链接题目难度——中等方法一:排序双指针代码/Python代码/C方法二代码/Python总结题目描述 这是前天周赛的第二题。 统计公平数对的数目 - 给你一个下标从 0 开始、长度为 n 的整数数组 nums ,和两个整数 lower 和 upper ,…...
【MySQL Shell】8.9.5 将集群重新加入到 InnoDB ClusterSet
如果 InnoDB 集群是 InnoDB ClusterSet 部署的一部分,MySQL Shell 会在重新启动后立即自动将其恢复到拓扑中的角色,前提是其运行正常且未被标记为无效。但是,如果集群被标记为无效或其 ClusterSet 复制通道已停止,则必须使用 clus…...
元素水平垂直居中的方法有哪些?如果元素不定宽高呢?
实现元素水平垂直居中的方式: 利用定位margin:auto利用定位margin:负值利用定位transformtable布局flex布局grid布局 1-利用定位margin:auto <style>.father{width:500px;height:300px;border:1px solid #0a3b98;position: relative;}.son{width:100px;heig…...
访问学者在新加坡访学生活日常花销大吗?
新加坡地理位置优越,社会发达,教学质量好,吸引不少国内学生前往新加坡留学、访学。那么,去新加坡访学,访问学者花销需要多少钱呢?下面和51访学网小编一起来了解一下吧。 一、饮食 新加坡的饮食从很亲民的…...
XCP实战系列介绍11-几个常用的XCP命令解析
本文框架 1.概述2. 常用命令解析2.1 CONNECT连接(0xFF)2.2 SHORT_UPLOAD 命令(0xF4)2.2 SET_MTA (0xF6)2.3 MOVE命令(0x19)2.4 GET_CAL_PAGE(0xEA)2.5 SET_CAL_PAGE(0xEB)2.6 DOWNLOAD(0xF0)1.概述 在文章《看了就会的XCP协议介绍》中详细介绍了XCP的协议,在《XCP实战系列介绍…...
全志V853芯片 如何在Tina V85x平台切换sensor?
目的 V85x某方案目前默认Sensor是GC2053。实际使用时若需要用到GC4663(比如wdr功能)和SC530AI(支持500W),可按如下步骤完成切换。 步骤 下面以GC4663为例,SC530AI按相应方式适配。 Step1 检查Sensor驱动…...
2023全网最火的接口自动化测试,一看就会
目录 接口自动化测试用例设计Excel接口测试用例访问MySQL接口测试用例访问PyTest测试框架接口自动化测试必备技能-HTTP协议request库实现接口请求 引言 与UI相比,接口一旦研发完成,通常变更或重构的频率和幅度相对较小。因此做接口自动化的性价比更高&…...
华为OD机试真题JAVA实现【最小传递延迟】真题+解题思路+代码(20222023)
🔥系列专栏 华为OD机试(JAVA)真题目录汇总华为OD机试(Python)真题目录汇总华为OD机试(C++)真题目录汇总华为OD机试(JavaScript)真题目录汇总文章目录 🔥系列专栏题目输入输出示例一输入输出说明解题思路核心知识点Code运行结果版权说...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
