当前位置: 首页 > news >正文

【人工智能】对贝叶斯网络进行吉布斯采样

在这里插入图片描述

问题

现要求通过吉布斯采样方法,利用该网络进行概率推理(计算 P(R=T|S=F, W=T)、P2(C=F|W=T)的概率值)。

原理

吉布斯采样的核心思想为一维一维地进行采样,采某一个维度的时候固定其他的维度,在本次实验中,假定上一个采样的样本为<C(True)、S(False)、R(True)、W(False)>,此时对C维度进行采样,吉布斯采样将会利用 P(C|S=False,R=True,W=False)的分布得到一个新的 C的值(False),并将该值代替原先的值产生一个新的样本<C(False)、S(False)、R(True)、W(False)>。

给定分布π(C,S,R,W)
step 1. t=0 时刻产生一个初始状态<C0,S0,R0,W0>,count = 0,采样序列 x=[<C0,S0,R0,W0>]
step 2. 从条件概率分布 P(C|S0,R0)采样得到<C1,S0,R0,W0>,加入到 x[C 已知跳转下一步]
step 3. 从条件概率分布 P(S|C1,R0,W0)采样得到<C1,S1,R0,W0>,加入到 x[S 已知跳转下一步]
step 4. 从条件概率分布 P(R|C1,S1,W0)采样得到<C1,S1,R1,W0>,加入到 x[R 已知跳转下一步]
step 5. 从条件概率分布 P(W|S1,R1)采样得到<C1,S1,R1,W1>,加入到 x[W 已知跳转下一步]
step 6. count = count + 1,如果 count < 指定采样次数跳转到 step2
step 7. 在采样序列中统计满足条件的样本数量,除以总采样数即为所求。
数据结构使用一个 4*2*2*2*2 的矩阵 M 用于存储条件概率分布。如 M[0,:,0,0,0]即表示
P(C|S=False,R=False,W=False)的分布,M[0,:,1,0,0]表示P(C|S=True,R=False,W=False)的分布。该矩阵可通过给定的贝叶斯网络进行构建。

解答

# -*- coding:utf-8 -*-# Gibbs samplingimport numpy as np
import copyclass Gibbs:def __init__(self,query_id=1):self.x = []self.query_id = query_idassert query_id == 1 or query_id ==2self.tran_matrix = np.zeros((4,2,2,2,2))# 0 : C Cloudy# 1 : S Sprinkler# 2 : R Rain# 3 : W Wet grass# 计算条件概率分布# P(C) = 0.5self.tran_matrix[0] = 0.5 # P(C) = 0.5# P(S|C=T) = 0.1,P(S|C=F) = 0.5self.tran_matrix[1,1,0,:,:] = self.tran_matrix[0,1,0,:,:] * (1-0.1)self.tran_matrix[1,1,1,:,:] = self.tran_matrix[0,1,1,:,:] * 0.1self.tran_matrix[1,0,0,:,:] = self.tran_matrix[0,0,0,:,:] * (1-0.5)self.tran_matrix[1,0,1,:,:] = self.tran_matrix[0,0,1,:,:] * 0.5# P(R|C=T) = 0.8,P(R|C=F) = 0.2self.tran_matrix[2,1,:,0,:] = self.tran_matrix[1,1,:,0,:] * (1-0.8)self.tran_matrix[2,1,:,1,:] = self.tran_matrix[1,1,:,1,:] * 0.8self.tran_matrix[2,0,:,0,:] = self.tran_matrix[1,0,:,0,:] * (1-0.2)self.tran_matrix[2,0,:,1,:] = self.tran_matrix[1,0,:,1,:] * 0.2# P(W|S=T,R=T) = 0.99, P(W|S=T,R=F) = 0.9# P(W|S=F,R=T) = 0.9, P(W|S=F,R=F) = 0self.tran_matrix[3,:,1,1,0] = self.tran_matrix[2,:,1,1,0] * (1-0.99)self.tran_matrix[3,:,1,1,1] = self.tran_matrix[2,:,1,1,1] * 0.99self.tran_matrix[3,:,1,0,0] = self.tran_matrix[2,:,1,0,0] * (1-0.9)self.tran_matrix[3,:,1,0,1] = self.tran_matrix[2,:,1,0,1] * 0.9self.tran_matrix[3,:,0,1,0] = self.tran_matrix[2,:,0,1,0] * (1-0.9)self.tran_matrix[3,:,0,1,1] = self.tran_matrix[2,:,0,1,1] * 0.9self.tran_matrix[3,:,0,0,0] = self.tran_matrix[2,:,0,0,0] * (1-0)self.tran_matrix[3,:,0,0,1] = self.tran_matrix[2,:,0,0,1] * 0self.tran_matrix[0] = self.tran_matrix[3] / (self.tran_matrix[3].sum(axis=0,keepdims=True) + 1e-9)self.tran_matrix[1] = self.tran_matrix[3] / (self.tran_matrix[3].sum(axis=1,keepdims=True) + 1e-9)self.tran_matrix[2] = self.tran_matrix[3] / (self.tran_matrix[3].sum(axis=2,keepdims=True) + 1e-9)self.tran_matrix[3] = self.tran_matrix[3] / (self.tran_matrix[3].sum(axis=3,keepdims=True) + 1e-9)# 初始化样本if self.query_id == 1:# P(R=T|S=F,W=T)self.ignore_var_idx = [1,3] # S=F,W=Tself.x.append([True,False,True,True])else:# P(C=F|W=T)self.ignore_var_idx = [3] # W=Tself.x.append([True,False,True,True])self._sample_axis = 0self._var_num = 4def sample(self,sample_num:int):for _ in range(sample_num * (self._var_num - len(self.ignore_var_idx))):last_x = copy.copy(self.x[-1])sample_axis = self._next_sample_axis()last_x[sample_axis]=Truesample_prob = self.tran_matrix[sample_axis,int(last_x[0]),int(last_x[1]),\int(last_x[2]),int(last_x[3])]if np.random.rand() < sample_prob:last_x[sample_axis] = Trueelse:last_x[sample_axis] = Falseself.x.append(last_x)self.x = self.x[::self._var_num - len(self.ignore_var_idx)]def _next_sample_axis(self):self._sample_axis += 1self._sample_axis %= self._var_numwhile self._sample_axis in self.ignore_var_idx:self._sample_axis += 1self._sample_axis %= self._var_numreturn self._sample_axisdef calculate_ans(self):count = 0for x in self.x:if x[2] and self.query_id==1: count += 1if not x[0] and self.query_id==2: count += 1return count / len(self.x)def reset(self):self.x = self.x[:1]gibbs = Gibbs(1)
gibbs.sample(100)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(R=T|S=F,W=T)采样100次,结果为:',ans)
gibbs.sample(500)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(R=T|S=F,W=T)采样500次,结果为:',ans)
gibbs.sample(1000)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(R=T|S=F,W=T)采样1000次,结果为:',ans)gibbs = Gibbs(2)
gibbs.sample(100)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(C=F|W=T)采样100次,结果为:',ans)
gibbs.sample(500)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(C=F|W=T)采样500次,结果为:',ans)
gibbs.sample(1000)
ans = gibbs.calculate_ans()
gibbs.reset()
print('P(C=F|W=T)采样1000次,结果为:',ans)

运行结果

在这里插入图片描述
P(R=T|S=F, W=T)≈1
P(C=F|W=T)≈0.41

相关文章:

【人工智能】对贝叶斯网络进行吉布斯采样

问题 现要求通过吉布斯采样方法&#xff0c;利用该网络进行概率推理&#xff08;计算 P(RT|SF, WT)、P2(CF|WT)的概率值&#xff09;。 原理 吉布斯采样的核心思想为一维一维地进行采样&#xff0c;采某一个维度的时候固定其他的维度&#xff0c;在本次实验中&#xff0c;假…...

Java 面向对象基础

文章目录一、类和对象1. 类的定义2. 对象的使用二、对象内存图三、成员变量和局部变量四、封装1. private 关键字2. this 关键字五、构造方法六、标准类制作一、类和对象 在此之前&#xff0c;我们先了解两个概念&#xff0c;对象和类。 万物皆对象&#xff0c;客观存在的事物…...

RocketMQ源码(21)—ConsumeMessageConcurrentlyService并发消费消息源码

基于RocketMQ release-4.9.3&#xff0c;深入的介绍了ConsumeMessageConcurrentlyService并发消费消息源码。 此前我们学习了consumer消息的拉取流程源码&#xff1a; RocketMQ源码(18)—DefaultMQPushConsumer消费者发起拉取消息请求源码RocketMQ源码(19)—Broker处理Default…...

基于 STM32+FPGA 的多轴运动控制器的设计

运动控制器是数控机床、高端机器人等自动化设备控制系统的核心。为保证控制器的实用性、实时性和稳定 性&#xff0c;提出一种以 STM32 为主控制器、FPGA 为辅助控制器的多轴运动控制器设计方案。给出了运动控制器的硬件电路设计&#xff0c; 将 S 形加减速算法融入运动控制器&…...

《爆肝整理》保姆级系列教程python接口自动化(十三)--cookie绕过验证码登录(详解

python接口自动化&#xff08;十三&#xff09;--cookie绕过验证码登录&#xff08;详解 简介 有些登录的接口会有验证码&#xff1a;短信验证码&#xff0c;图形验证码等&#xff0c;这种登录的话验证码参数可以从后台获取的&#xff08;或者查数据库最直接&#xff09;。获取…...

soapui + groovy 接口自动化测试

1.操作excel的groovy脚本 package pubimport jxl.* import jxl.write.Label import jxl.write.WritableWorkbookclass ExcelOperation {def xlsFiledef workbookdef writableWorkbookdef ExcelOperation(){}//设置xlsFile文件路径def ExcelOperation(xlsFile){this.xlsFile x…...

Linux内存管理(三十五):内存规整简介

源码基于:Linux5.4 0. 前言 伙伴系统以页面为单位来管理内存,内存碎片也是基于页面的,即由大量离散且不连续的页面组成的。从内核角度来看,出现内存碎片不是好事情,有些情况下物理设备需要大段的连续的物理内存,如果内核无法满足,则会发生内核错误。内存规整就是为了解…...

Java连接Redis

Jedis是Redis官方推荐的Java连接开发工具。api&#xff1a;https://tool.oschina.net/apidocs/apidoc?apijedis-2.1.0一、 导入包<!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency><groupId>redis.clients</groupId><…...

Python语言零基础入门教程(十六)

Python 模块 Python 模块(Module)&#xff0c;是一个 Python 文件&#xff0c;以 .py 结尾&#xff0c;包含了 Python 对象定义和Python语句。 模块让你能够有逻辑地组织你的 Python 代码段。 把相关的代码分配到一个模块里能让你的代码更好用&#xff0c;更易懂。 模块能定…...

SAP ERP系统SD模块常用增强之一:VA01/VA02创建或修改SO的输入检查

在SAP/ERP项目的实施中销售管理模块&#xff08;SD&#xff09;的创建和修改销售订单必定会有输入字段校验检查的需求&#xff0c;来防止业务人员录入错误或少录入数据&#xff0c;SAP公司也考虑到这一点&#xff0c;所以这方面的配置功能也非常强大&#xff0c;通常情况下不需…...

深度学习知识补充

候选位置(proposal) RCNN 什么时ROI&#xff1f; 在图像处理领域&#xff0c;感兴趣区域(region of interest &#xff0c; ROI) 是从图像中选择的一个图像区域&#xff0c;这个区域是你的图像分析所关注的重点。圈定该区域以便进行进一步处理。使用ROI圈定你想读的目标&…...

Vue笔记(1)——数据代理与绑定

一、初始Vue 1.想让Vue工作&#xff0c;就必须创建一个Vue实例&#xff0c;且要传入一个配置对象&#xff1b; 2.root容器里的代码依然符合html规范&#xff0c;只不过混入了一些特殊的Vue语法&#xff1b; 3.root容器里的代码被称为【Vue模板】&#xff1b; 4.Vue实例和容器是…...

LeetCode题目笔记——2563. 统计公平数对的数目

文章目录题目描述题目链接题目难度——中等方法一&#xff1a;排序双指针代码/Python代码/C方法二代码/Python总结题目描述 这是前天周赛的第二题。 统计公平数对的数目 - 给你一个下标从 0 开始、长度为 n 的整数数组 nums &#xff0c;和两个整数 lower 和 upper &#xff0c…...

【MySQL Shell】8.9.5 将集群重新加入到 InnoDB ClusterSet

如果 InnoDB 集群是 InnoDB ClusterSet 部署的一部分&#xff0c;MySQL Shell 会在重新启动后立即自动将其恢复到拓扑中的角色&#xff0c;前提是其运行正常且未被标记为无效。但是&#xff0c;如果集群被标记为无效或其 ClusterSet 复制通道已停止&#xff0c;则必须使用 clus…...

元素水平垂直居中的方法有哪些?如果元素不定宽高呢?

实现元素水平垂直居中的方式&#xff1a; 利用定位margin:auto利用定位margin:负值利用定位transformtable布局flex布局grid布局 1-利用定位margin:auto <style>.father{width:500px;height:300px;border:1px solid #0a3b98;position: relative;}.son{width:100px;heig…...

访问学者在新加坡访学生活日常花销大吗?

新加坡地理位置优越&#xff0c;社会发达&#xff0c;教学质量好&#xff0c;吸引不少国内学生前往新加坡留学、访学。那么&#xff0c;去新加坡访学&#xff0c;访问学者花销需要多少钱呢&#xff1f;下面和51访学网小编一起来了解一下吧。 一、饮食 新加坡的饮食从很亲民的…...

XCP实战系列介绍11-几个常用的XCP命令解析

本文框架 1.概述2. 常用命令解析2.1 CONNECT连接(0xFF)2.2 SHORT_UPLOAD 命令(0xF4)2.2 SET_MTA (0xF6)2.3 MOVE命令(0x19)2.4 GET_CAL_PAGE(0xEA)2.5 SET_CAL_PAGE(0xEB)2.6 DOWNLOAD(0xF0)1.概述 在文章《看了就会的XCP协议介绍》中详细介绍了XCP的协议,在《XCP实战系列介绍…...

全志V853芯片 如何在Tina V85x平台切换sensor?

目的 V85x某方案目前默认Sensor是GC2053。实际使用时若需要用到GC4663&#xff08;比如wdr功能&#xff09;和SC530AI&#xff08;支持500W&#xff09;&#xff0c;可按如下步骤完成切换。 步骤 下面以GC4663为例&#xff0c;SC530AI按相应方式适配。 Step1 检查Sensor驱动…...

2023全网最火的接口自动化测试,一看就会

目录 接口自动化测试用例设计Excel接口测试用例访问MySQL接口测试用例访问PyTest测试框架接口自动化测试必备技能-HTTP协议request库实现接口请求 引言 与UI相比&#xff0c;接口一旦研发完成&#xff0c;通常变更或重构的频率和幅度相对较小。因此做接口自动化的性价比更高&…...

华为OD机试真题JAVA实现【最小传递延迟】真题+解题思路+代码(20222023)

🔥系列专栏 华为OD机试(JAVA)真题目录汇总华为OD机试(Python)真题目录汇总华为OD机试(C++)真题目录汇总华为OD机试(JavaScript)真题目录汇总文章目录 🔥系列专栏题目输入输出示例一输入输出说明解题思路核心知识点Code运行结果版权说...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

ui框架-文件列表展示

ui框架-文件列表展示 介绍 UI框架的文件列表展示组件&#xff0c;可以展示文件夹&#xff0c;支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项&#xff0c;适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...