【情人节专属】AI一键预测你和Ta的CP值
如何预测你和心仪的Ta有没有夫妻相?
基于华为云ModelArts开发的【一键预测你和Ta的CP值】Demo帮你预测CP指数。
该模型利用ssim算法综合计算五官特征相似程度,从而得出CP值。
//夫妻相的原理在当今心理学、生物学仍有很大争议,夫妻相指数高并不意味着两人未来一定会幸福美满,也不能预判彼此关系变好变坏。本案例只适用于AI技术的学习以及情人节娱乐。
1.下载需要的海报文件和字体
import osimport os.path as osp
import moxing as mox
parent = osp.join(os.getcwd(),'Valentine')
if not os.path.exists(parent):mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/Valentine',parent)if os.path.exists(parent):print('Download success')else:raise Exception('Download Failed')
else:print("Model Package already exists!")
2.使用ssim算法计算夫妻相
import numpy as np
import cv2
import random
import matplotlib.pyplot as plt
from matplotlib import font_manager
import warnings
from scipy.signal import convolve2d
from PIL import Image,ImageDraw,ImageFontwarnings.filterwarnings('ignore')
def matlab_style_gauss2D(shape=(3,3),sigma=0.5):"""2D gaussian mask - should give the same result as MATLAB'sfspecial('gaussian',[shape],[sigma])"""m,n = [(ss-1.)/2. for ss in shape]y,x = np.ogrid[-m:m+1,-n:n+1]h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )h[ h < np.finfo(h.dtype).eps*h.max() ] = 0sumh = h.sum()if sumh != 0:h /= sumhreturn hdef filter2(x, kernel, mode='same'):return convolve2d(x, np.rot90(kernel, 2), mode=mode)def compute_ssim(im1, im2, k1=0.01, k2=0.04, win_size=11, L=255):if not im1.shape == im2.shape:raise ValueError("Input Imagees must have the same dimensions")if len(im1.shape) > 2:raise ValueError("Please input the images with 1 channel")M, N = im1.shapeC1 = (k1*L)**2C2 = (k2*L)**2window = matlab_style_gauss2D(shape=(win_size,win_size), sigma=0.5)window = window/np.sum(np.sum(window))if im1.dtype == np.uint8:im1 = np.double(im1)if im2.dtype == np.uint8:im2 = np.double(im2)mu1 = filter2(im1, window, 'valid')mu2 = filter2(im2, window, 'valid')mu1_sq = mu1 * mu1mu2_sq = mu2 * mu2mu1_mu2 = mu1 * mu2sigma1_sq = filter2(im1*im1, window, 'valid') - mu1_sqsigma2_sq = filter2(im2*im2, window, 'valid') - mu2_sqsigmal2 = filter2(im1*im2, window, 'valid') - mu1_mu2ssim_map = ((2*mu1_mu2+C1) * (2*sigmal2+C2)) / ((mu1_sq+mu2_sq+C1) * (sigma1_sq+sigma2_sq+C2))return np.mean(np.mean(ssim_map))def img_show(similarity, img1, img2, name1, name2):# similarity = random.uniform(60,100)zt = "./Valentine/方正兰亭准黑_GBK.ttf"my_font = font_manager.FontProperties(fname = zt,size =20 )img1 = cv2.resize(img1, (520, 520))img2 = cv2.resize(img2, (520, 520))imgs = np.hstack([img1, img2])imgs2 = imgs[:,:, ::-1]plt.axis('off')plt.title('{0} VS {1} \n CP指数: {2}%'.format(name1, name2, round(similarity, 2)), fontproperties=my_font)plt.imshow(imgs2)path = "a.jpg"cv2.imwrite(path, imgs)# img = cv2ImgAddText(imgs, '夫妻相: {}%'.format(round(similarity, 2)), 350, 130, (255, 0 , 0), 50)# cv2.imshow('image1 vs image2', img)# cv2.waitKey()
3.修改预置的视频和图片
在Valentine文件夹下,有一个预置的1.png和2.png图片,大家可以将里面的图片替换成自己的,图片的名称不建议修改,如果修改成其他的名称,后面的路径也要进行相应的修改。
点击此处上传你和Ta的照片(不会留存照片信息,推理完成后内存数据会自动清除)

上传成功

if __name__ == '__main__':name1 = input('请输入图1照片姓名: \n')name2 = input('请输入图2照片姓名: \n')img1_path = 'Valentine/1.png'img2_path = 'Valentine/2.png'img1 = cv2.imread(img1_path)img2 = cv2.imread(img2_path)im1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)im2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)im1 = cv2.resize(im1, (520,520))im2 = cv2.resize(im2, (520,520))similarity = compute_ssim(im1, im2)*100if similarity == 100:raise ValueError("图片重复! 请重新上传图片")random.seed(similarity)add_score = random.uniform(1, 100-similarity)similarity += add_scoreimg_show(similarity, img1, img2, name1, name2)
注意:输入图1图2照片姓名后都需要按下回车键

预测成功:

image = Image.open("a.jpg")
image = image.resize((498,278))
4.打印输出海报
import os
from PIL import Image,ImageDraw,ImageFont,ImageFilter
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
填写创作者名称

右键即可下载海报

海报如下:

相关文章:

【情人节专属】AI一键预测你和Ta的CP值
如何预测你和心仪的Ta有没有夫妻相?基于华为云ModelArts开发的【一键预测你和Ta的CP值】Demo帮你预测CP指数。该模型利用ssim算法综合计算五官特征相似程度,从而得出CP值。//夫妻相的原理在当今心理学、生物学仍有很大争议,夫妻相指数高并不意…...

一文浅谈sql中的 in与not in,exists与not exists的区别以及性能分析
文章目录1. 文章引言2. 查询对比2.1 in和exists2.2 not in 和not exists2.3 in 与 的区别3. 性能分析3.1 in和exists3.2 NOT IN 与NOT EXISTS4. 重要总结1. 文章引言 我们在工作的过程中,经常使用in,not in,exists,not exists来…...

2023前端面试题——JS篇
1.判断 js 类型的方式 1. typeof 可以判断出’string’,‘number’,‘boolean’,‘undefined’,‘symbol’ 但判断 typeof(null) 时值为 ‘object’; 判断数组和对象时值均为 ‘object’ 2. instanceof 原理是 构造函数的 prototype 属性是否出现在对象的原型链中的任何位置 …...

微服务中API网关的作用是什么?
目录 什么是API网关? 为什么要用API网关? API网关架构 API网关是如何实现这些功能的? 协议转换 链式处理 异步请求 什么是API网关? Api网关是微服务的重要组成部分,封装了系统内部的复杂结构,客户端…...

python爬虫--xpath模块简介
一、前言 前两篇博客讲解了爬虫解析网页数据的两种常用方法,re正则表达解析和beautifulsoup标签解析,所以今天的博客将围绕另外一种数据解析方法,它就是xpath模块解析,话不多说,进入内容: 一、简介 XPat…...

【论文阅读】基于意图的网络(Intent-Based Networking,IBN)研究综述
IBN研究综述一、IBN体系结构1.1 体系结构:1.2 闭环流程:1.3 IBN的自动化程度(逐步向前演进):二、IBN 的实现方式2.1 意图获取:2.1.1 YANG、NEMO2.1.2 Frenetic、NetKAT、LAI2.2 意图转译:2.2.1 iNDIRA系统2.2.2 基于模…...

【云原生kubernetes】k8s service使用详解
一、什么是服务service? 在k8s里面,每个Pod都会被分配一个单独的IP地址,但这个IP地址会随着Pod的销毁而消失,重启pod的ip地址会发生变化,此时客户如果访问原先的ip地址则会报错 ; Service (服务)就是用来解决这个问题的…...

Python 数据可视化的 3 大步骤,你知道吗?
Python实现可视化的三个步骤: 确定问题,选择图形转换数据,应用函数参数设置,一目了然 1、首先,要知道我们用哪些库来画图? matplotlib Python中最基本的作图库就是matplotlib,是一个最基础的Python可视…...

CSS基础:盒子模型和浮动
盒子模型 所有HTML元素可以看作盒子,在CSS中,"box model"这一术语是用来设计和布局时使用 CSS盒模型本质上是一个盒子,封装HTML元素。 它包括:外边距(margin),边框(bord…...

OpenHarmony使用Socket实现一个TCP服务端详解
点击获取BearPi-HM_Nano源码 ,以D4_iot_tcp_server为例: 点击查看:上一篇关于socket udp实现的解析 查看 TCPServerTask 方法实现: static void TCPServerTask(void) {//连接WifiWifiConnect("TP-LINK_65A8",...

kafka监控工具安装和使用
1. KafkaOffsetMonitor 该监控是基于一个jar包的形式运行,部署较为方便。只有监控功能,使用起来也较为安全(1)消费者组列表 (2)查看topic的历史消费信息. (3)每个topic的所有parition列表(topic,pid,offset,logSize,lag,owner) (4)对consumer消费情况进…...
近期工作感悟
从应届生变为社畜已经半年了,在这里吐槽一下自己的所想给自己看。 首先是心理层面上的,初期大大增加的压力。 我觉得应届生能够来到大厂的,基本都是在大学有去规划学习,对自己技能比较认可的。比如我在学校自学游戏开发ÿ…...

大数据框架之Hadoop:HDFS(三)HDFS客户端操作(开发重点)
3.1 HDFS客户端环境准备 1.根据自己电脑的操作系统拷贝对应的编译后的hadoop jar包到非中文路径(例如:D:\javaEnv\hadoop-2.77),如下图所示。 2.配置HADOOP_HOME环境变量,如下图所示。 3&#…...

多模式支持无线监控技术:主动式定位、被动式定位
物联网空间信息与数字技术发展至今,已经催生了一大批优秀的践行者。在日常与商业应用中,室内外定位领域依托于这一技术的发展,更是在近几年风光无限。但是并不是说室内定位与室外定位都已经相当成熟,相对来说,室内定位…...

Cy5 Alkyne,1223357-57-0,花青素Cyanine5炔基,氰基5炔烃
CAS号:1223357-57-0 | 英文名: Cyanine5 alkyne,Cy5 Alkyne | 中文名:花青素CY5炔基CASNumber:1223357-57-0Molecular formula:C35H42ClN3OMolecular weight:556.19Purity:95%Appear…...

【MySQL】MySQL 中 WITH 子句详解:从基础到实战示例
文章目录一、什么是 WITH 子句1. 定义2.用途二、WITH 子句的语法和用法1.语法2.使用示例3.优点三、总结"梦想不会碎,只有被放弃了才会破灭。" "Dreams wont break, only abandoned will shatter."一、什么是 WITH 子句 1. 定义 WITH 子句是 M…...

c/c++开发,无可避免的模板编程实践(篇一)
一、c模板 c开发中,在声明变量、函数、类时,c都会要求使用指定的类型。在实际项目过程中,会发现很多代码除了类型不同之外,其他代码看起来都是相同的,为了实现这些相同功能,我们可能会进行如下设计…...
mulesoft MCIA 破釜沉舟备考 2023.02.13.04
mulesoft MCIA 破釜沉舟备考 2023.02.13.03 1. An integration Mule application consumes and processes a list of rows from a CSV file.2. One of the backend systems involved by the API implementation enforces rate limits on the number of request a particle clie…...

Camtasia2023最新版本新功能及快捷键教程
使用Camtasia,您可以毫不费力地在计算机的显示器上录制专业的活动视频。除了录制视频外,Camtasia还允许您从外部源将高清视频导入到录制中。Camtasia的独特之处在于它可以创建包含可单击链接的交互式视频,以生成适用于教室或工作场所的动态视…...

Fabric磁盘扩容后数据迁移
线上环境原来的磁盘比较小,随着业务数据的增多,磁盘需要扩容,因此需要把原来docker数据转移至新的数据盘。 数据迁移 操作系统: centOS 7 docker默认的数据目录为/var/lib/docker 创建一个新的目录/opt/dockerdata&…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...

nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
Spring Boot + MyBatis 集成支付宝支付流程
Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例(电脑网站支付) 1. 添加依赖 <!…...