【情人节专属】AI一键预测你和Ta的CP值
如何预测你和心仪的Ta有没有夫妻相?
基于华为云ModelArts开发的【一键预测你和Ta的CP值】Demo帮你预测CP指数。
该模型利用ssim算法综合计算五官特征相似程度,从而得出CP值。
//夫妻相的原理在当今心理学、生物学仍有很大争议,夫妻相指数高并不意味着两人未来一定会幸福美满,也不能预判彼此关系变好变坏。本案例只适用于AI技术的学习以及情人节娱乐。
1.下载需要的海报文件和字体
import osimport os.path as osp
import moxing as mox
parent = osp.join(os.getcwd(),'Valentine')
if not os.path.exists(parent):mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/Valentine',parent)if os.path.exists(parent):print('Download success')else:raise Exception('Download Failed')
else:print("Model Package already exists!")
2.使用ssim算法计算夫妻相
import numpy as np
import cv2
import random
import matplotlib.pyplot as plt
from matplotlib import font_manager
import warnings
from scipy.signal import convolve2d
from PIL import Image,ImageDraw,ImageFontwarnings.filterwarnings('ignore')
def matlab_style_gauss2D(shape=(3,3),sigma=0.5):"""2D gaussian mask - should give the same result as MATLAB'sfspecial('gaussian',[shape],[sigma])"""m,n = [(ss-1.)/2. for ss in shape]y,x = np.ogrid[-m:m+1,-n:n+1]h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )h[ h < np.finfo(h.dtype).eps*h.max() ] = 0sumh = h.sum()if sumh != 0:h /= sumhreturn hdef filter2(x, kernel, mode='same'):return convolve2d(x, np.rot90(kernel, 2), mode=mode)def compute_ssim(im1, im2, k1=0.01, k2=0.04, win_size=11, L=255):if not im1.shape == im2.shape:raise ValueError("Input Imagees must have the same dimensions")if len(im1.shape) > 2:raise ValueError("Please input the images with 1 channel")M, N = im1.shapeC1 = (k1*L)**2C2 = (k2*L)**2window = matlab_style_gauss2D(shape=(win_size,win_size), sigma=0.5)window = window/np.sum(np.sum(window))if im1.dtype == np.uint8:im1 = np.double(im1)if im2.dtype == np.uint8:im2 = np.double(im2)mu1 = filter2(im1, window, 'valid')mu2 = filter2(im2, window, 'valid')mu1_sq = mu1 * mu1mu2_sq = mu2 * mu2mu1_mu2 = mu1 * mu2sigma1_sq = filter2(im1*im1, window, 'valid') - mu1_sqsigma2_sq = filter2(im2*im2, window, 'valid') - mu2_sqsigmal2 = filter2(im1*im2, window, 'valid') - mu1_mu2ssim_map = ((2*mu1_mu2+C1) * (2*sigmal2+C2)) / ((mu1_sq+mu2_sq+C1) * (sigma1_sq+sigma2_sq+C2))return np.mean(np.mean(ssim_map))def img_show(similarity, img1, img2, name1, name2):# similarity = random.uniform(60,100)zt = "./Valentine/方正兰亭准黑_GBK.ttf"my_font = font_manager.FontProperties(fname = zt,size =20 )img1 = cv2.resize(img1, (520, 520))img2 = cv2.resize(img2, (520, 520))imgs = np.hstack([img1, img2])imgs2 = imgs[:,:, ::-1]plt.axis('off')plt.title('{0} VS {1} \n CP指数: {2}%'.format(name1, name2, round(similarity, 2)), fontproperties=my_font)plt.imshow(imgs2)path = "a.jpg"cv2.imwrite(path, imgs)# img = cv2ImgAddText(imgs, '夫妻相: {}%'.format(round(similarity, 2)), 350, 130, (255, 0 , 0), 50)# cv2.imshow('image1 vs image2', img)# cv2.waitKey()
3.修改预置的视频和图片
在Valentine文件夹下,有一个预置的1.png和2.png图片,大家可以将里面的图片替换成自己的,图片的名称不建议修改,如果修改成其他的名称,后面的路径也要进行相应的修改。
点击此处上传你和Ta的照片(不会留存照片信息,推理完成后内存数据会自动清除)

上传成功

if __name__ == '__main__':name1 = input('请输入图1照片姓名: \n')name2 = input('请输入图2照片姓名: \n')img1_path = 'Valentine/1.png'img2_path = 'Valentine/2.png'img1 = cv2.imread(img1_path)img2 = cv2.imread(img2_path)im1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)im2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)im1 = cv2.resize(im1, (520,520))im2 = cv2.resize(im2, (520,520))similarity = compute_ssim(im1, im2)*100if similarity == 100:raise ValueError("图片重复! 请重新上传图片")random.seed(similarity)add_score = random.uniform(1, 100-similarity)similarity += add_scoreimg_show(similarity, img1, img2, name1, name2)
注意:输入图1图2照片姓名后都需要按下回车键

预测成功:

image = Image.open("a.jpg")
image = image.resize((498,278))
4.打印输出海报
import os
from PIL import Image,ImageDraw,ImageFont,ImageFilter
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
填写创作者名称

右键即可下载海报

海报如下:

相关文章:

【情人节专属】AI一键预测你和Ta的CP值
如何预测你和心仪的Ta有没有夫妻相?基于华为云ModelArts开发的【一键预测你和Ta的CP值】Demo帮你预测CP指数。该模型利用ssim算法综合计算五官特征相似程度,从而得出CP值。//夫妻相的原理在当今心理学、生物学仍有很大争议,夫妻相指数高并不意…...

一文浅谈sql中的 in与not in,exists与not exists的区别以及性能分析
文章目录1. 文章引言2. 查询对比2.1 in和exists2.2 not in 和not exists2.3 in 与 的区别3. 性能分析3.1 in和exists3.2 NOT IN 与NOT EXISTS4. 重要总结1. 文章引言 我们在工作的过程中,经常使用in,not in,exists,not exists来…...

2023前端面试题——JS篇
1.判断 js 类型的方式 1. typeof 可以判断出’string’,‘number’,‘boolean’,‘undefined’,‘symbol’ 但判断 typeof(null) 时值为 ‘object’; 判断数组和对象时值均为 ‘object’ 2. instanceof 原理是 构造函数的 prototype 属性是否出现在对象的原型链中的任何位置 …...

微服务中API网关的作用是什么?
目录 什么是API网关? 为什么要用API网关? API网关架构 API网关是如何实现这些功能的? 协议转换 链式处理 异步请求 什么是API网关? Api网关是微服务的重要组成部分,封装了系统内部的复杂结构,客户端…...

python爬虫--xpath模块简介
一、前言 前两篇博客讲解了爬虫解析网页数据的两种常用方法,re正则表达解析和beautifulsoup标签解析,所以今天的博客将围绕另外一种数据解析方法,它就是xpath模块解析,话不多说,进入内容: 一、简介 XPat…...

【论文阅读】基于意图的网络(Intent-Based Networking,IBN)研究综述
IBN研究综述一、IBN体系结构1.1 体系结构:1.2 闭环流程:1.3 IBN的自动化程度(逐步向前演进):二、IBN 的实现方式2.1 意图获取:2.1.1 YANG、NEMO2.1.2 Frenetic、NetKAT、LAI2.2 意图转译:2.2.1 iNDIRA系统2.2.2 基于模…...

【云原生kubernetes】k8s service使用详解
一、什么是服务service? 在k8s里面,每个Pod都会被分配一个单独的IP地址,但这个IP地址会随着Pod的销毁而消失,重启pod的ip地址会发生变化,此时客户如果访问原先的ip地址则会报错 ; Service (服务)就是用来解决这个问题的…...

Python 数据可视化的 3 大步骤,你知道吗?
Python实现可视化的三个步骤: 确定问题,选择图形转换数据,应用函数参数设置,一目了然 1、首先,要知道我们用哪些库来画图? matplotlib Python中最基本的作图库就是matplotlib,是一个最基础的Python可视…...

CSS基础:盒子模型和浮动
盒子模型 所有HTML元素可以看作盒子,在CSS中,"box model"这一术语是用来设计和布局时使用 CSS盒模型本质上是一个盒子,封装HTML元素。 它包括:外边距(margin),边框(bord…...

OpenHarmony使用Socket实现一个TCP服务端详解
点击获取BearPi-HM_Nano源码 ,以D4_iot_tcp_server为例: 点击查看:上一篇关于socket udp实现的解析 查看 TCPServerTask 方法实现: static void TCPServerTask(void) {//连接WifiWifiConnect("TP-LINK_65A8",...

kafka监控工具安装和使用
1. KafkaOffsetMonitor 该监控是基于一个jar包的形式运行,部署较为方便。只有监控功能,使用起来也较为安全(1)消费者组列表 (2)查看topic的历史消费信息. (3)每个topic的所有parition列表(topic,pid,offset,logSize,lag,owner) (4)对consumer消费情况进…...
近期工作感悟
从应届生变为社畜已经半年了,在这里吐槽一下自己的所想给自己看。 首先是心理层面上的,初期大大增加的压力。 我觉得应届生能够来到大厂的,基本都是在大学有去规划学习,对自己技能比较认可的。比如我在学校自学游戏开发ÿ…...

大数据框架之Hadoop:HDFS(三)HDFS客户端操作(开发重点)
3.1 HDFS客户端环境准备 1.根据自己电脑的操作系统拷贝对应的编译后的hadoop jar包到非中文路径(例如:D:\javaEnv\hadoop-2.77),如下图所示。 2.配置HADOOP_HOME环境变量,如下图所示。 3&#…...

多模式支持无线监控技术:主动式定位、被动式定位
物联网空间信息与数字技术发展至今,已经催生了一大批优秀的践行者。在日常与商业应用中,室内外定位领域依托于这一技术的发展,更是在近几年风光无限。但是并不是说室内定位与室外定位都已经相当成熟,相对来说,室内定位…...

Cy5 Alkyne,1223357-57-0,花青素Cyanine5炔基,氰基5炔烃
CAS号:1223357-57-0 | 英文名: Cyanine5 alkyne,Cy5 Alkyne | 中文名:花青素CY5炔基CASNumber:1223357-57-0Molecular formula:C35H42ClN3OMolecular weight:556.19Purity:95%Appear…...

【MySQL】MySQL 中 WITH 子句详解:从基础到实战示例
文章目录一、什么是 WITH 子句1. 定义2.用途二、WITH 子句的语法和用法1.语法2.使用示例3.优点三、总结"梦想不会碎,只有被放弃了才会破灭。" "Dreams wont break, only abandoned will shatter."一、什么是 WITH 子句 1. 定义 WITH 子句是 M…...

c/c++开发,无可避免的模板编程实践(篇一)
一、c模板 c开发中,在声明变量、函数、类时,c都会要求使用指定的类型。在实际项目过程中,会发现很多代码除了类型不同之外,其他代码看起来都是相同的,为了实现这些相同功能,我们可能会进行如下设计…...
mulesoft MCIA 破釜沉舟备考 2023.02.13.04
mulesoft MCIA 破釜沉舟备考 2023.02.13.03 1. An integration Mule application consumes and processes a list of rows from a CSV file.2. One of the backend systems involved by the API implementation enforces rate limits on the number of request a particle clie…...

Camtasia2023最新版本新功能及快捷键教程
使用Camtasia,您可以毫不费力地在计算机的显示器上录制专业的活动视频。除了录制视频外,Camtasia还允许您从外部源将高清视频导入到录制中。Camtasia的独特之处在于它可以创建包含可单击链接的交互式视频,以生成适用于教室或工作场所的动态视…...

Fabric磁盘扩容后数据迁移
线上环境原来的磁盘比较小,随着业务数据的增多,磁盘需要扩容,因此需要把原来docker数据转移至新的数据盘。 数据迁移 操作系统: centOS 7 docker默认的数据目录为/var/lib/docker 创建一个新的目录/opt/dockerdata&…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...