当前位置: 首页 > news >正文

蓝桥杯第26天(Python)考前挣扎

题型:

1.思维题/杂题:数学公式,分析题意,找规律

2.BFS/DFS:广搜(递归实现),深搜(deque实现)

3.简单数论:模,素数(只需要判断到 int(sqrt(n))+1),gcd,lcm,快速幂(位运算移位操作),大数分解(分解为质数的乘积)

4.简单图论:最短路(一对多(Dijstra,临接表,矩阵实现),多对多(Floyd,矩阵实现)),最小生成树(并查集实现)

5.简单字符串处理:最好转为列表操作

6.DP:线性DP,最长公共子序列,0/1背包问题,最长连续字符串,最大递增子串

7.基本算法:二分,贪心,组合,排列,前缀和,差分

8.基本数据结构:队列,集合,字典,字符串,列表,栈,树

9.常用模块:math,datetime,sys中的设置最大递归深度(sys.setrecursionlimit(3000000)),collections.deque(队列),itertools.combinations(list,n)(组合),itertools.permutations(list,n)(排列)  heapq(小顶堆)

目录

题型:

模板回顾:

1.DFS代码框架(搜图建议↓为x方向,→为y方向)(找有多少条路径)

搜路径模板

 搜索组合模板 

 BFS+DFS

2.BFS逐层搜索(找最短路径)

搜索模板 

BFS搜索示例 (通过set()去重)

 3.并查集(连通子图,最小生成树)

 4.DP动态规划 ( 完全背包 http://t.csdn.cn/HnkGN)( http://t.csdn.cn/jSSby)

0/1背包问题:

最长公共子序列

最长递增子序列(LIS)

编辑距离(字符串转换)

5.数论

LCM和GCD

 快速幂

矩阵乘法 

埃式筛

 大数分解(质因数分解)

6.组合数学

加法原理

鸽巢原理 

 杨辉三角​编辑

 7.计算几何

点积

叉积

点跟直线关系

8.图论算法(图论章节http://t.csdn.cn/pitI6)

存边方式

 Floyd算法

Dijstra算法

Bellman-ford算法

9.常用库

10.前缀和、差分
 


模板回顾:
1.DFS代码框架(搜图建议↓为x方向,→为y方向)(找有多少条路径)

(BFS章节:http://t.csdn.cn/iv8UO)

标记数组,记录数组,全局变量ans 

搜路径模板

 搜索组合模板 

 BFS+DFS

import sys  #设置递归深度
import collections  #队列
import itertools  # 排列组合
import heapq
sys.setrecursionlimit(100000)s="01010101001011001001010110010110100100001000101010 \
10000001100111010111010001000110111010101101111000"vis=[[0]*60 for _ in range(60)]  # 标记是否访问过
fa=[['']*60 for _ in range(60)]  # 记录父结点
flag=['D','L','R','U']  # ↓x → y
##a = list(s.split(' '))
##print(a)
##ss=[]
##for i in s:  #转为2维列表
##    ss.append(i)
##print(ss)
ss=[]
for i in range(30):ss.append(list(map(int,input())))def dfs(x,y):  # 通过DFS遍历找路径if x==0 and y==0:returnif fa[x][y]=='D':dfs(x-1,y)if fa[x][y] =='L': dfs(x,y+1)if fa[x][y] =='R': dfs(x,y-1)if fa[x][y] =='U': dfs(x+1,y)print(fa[x][y],end='')def bfs(x,y):global faglobal visdeque=collections.deque()walk=[[1,0],[0,-1],[0,1],[-1,0]]  # 下,左,右,上vis[x][y]=1deque.append((0,0))  # 添加进队列while deque:x,y=deque.popleft()#print(x,y)if x==29 and y==49:print("找到终点!!")breakfor index in range(4):dx,dy=walk[index]nx=x+dx;ny=y+dyif 0<=nx<=29 and 0<=ny<=49 :if vis[nx][ny]==0 and ss[nx][ny]==0: # 坐标合法且没有走过vis[nx][ny]=1deque.append((nx,ny))fa[nx][ny]=flag[index]bfs(0,0)    
dfs(29,49)

用栈记录路径,即在保护现场是入栈,恢复现场时出栈。

2.BFS逐层搜索(找最短路径)

(BFS章节:http://t.csdn.cn/G1kgx)

搜索模板 

BFS搜索示例 (通过set()去重)

 3.并查集(连通子图,最小生成树)

 4.DP动态规划 ( 完全背包 http://t.csdn.cn/HnkGN)( http://t.csdn.cn/jSSby)

0/1背包问题:

def solve(N,C):  # 从左到右,从上到下 (先种类,再体积)for i in range(1,N+1): # N种物品,先1种,再2种......for j in range(1,C+1):  # 当前背包体积if c[i]>j : dp[i][j] = dp[i-1][j]    # 新增的第i种物品的体积大于背包重量,只有不选,继承上一个选择else: dp[i][j] = max(dp[i-1][j-c[i]]+w[i],dp[i-1][j])  # 装或者不装,找最大值return dp[N][C]
N,C= map(int,input().split())
n=3010
dp = [[0]*n for i in range(n)]  # 初始化dp数组,预留更大空间
c=[0]*n  # 记录体积
w=[0]*n # 记录价值
for i in range(1,N+1):   #读入N种物品的价值和体积c[i],w[i] = map(int,input().split())
print(solve(N,C))

最长公共子序列

n,m = map(int,input().split())  # B n个元素 A m个元素
a = [0] + list(map(int,input().split()))
b = [0] + list(map(int,input().split()))
dp = [[0]*(m+1) for _ in range(2)]   # 注意这里是m,不是n
now = 0 ;old = 1
for i in range(1,n+1):now,old = old,nowfor j in range(1,m+1):dp[now][j] = max(dp[now][j-1],dp[old][j])if a[i]==b[j]:  # 相同的元素dp[now][j] = max(dp[now][j],dp[old][j-1]+1)
print(dp[now][m])

最长递增子序列(LIS)

N =int(input()) # 对手个数
a = [0]+[int(i) for i in input().split()]  # 记录对手战力值
dp = [0]*(N+1) # 记录以第i个数为结尾的最长递增子序列
dp[1]=1
for i in range(2,N+1):  # 从2-N循环for j in range(1,i): # 查找前面的比a[i]小的if a[j]<a[i] and dp[j]>dp[i]:   #找到小的同时给他赋值max(dp[j])dp[i]=dp[j]dp[i]+=1  # 加1,即本身

编辑距离(字符串转换)

5.数论

LCM和GCD

 

 快速幂

位运算
通过 n&1=True,则n最低位就是1
n>>,n右移动def fast(a,n,mod):ans=1a%=mod   # 提升运算效率,Python不用担心大数月越界问题while(n)>0:if n&1 :ans=(a*ans)%mod#a=a*a   # 翻倍a=(a*a)%mod   # 翻倍n=n>>1  # 右移一位
a,b,mod = map(int,input().split())
print(fast(a,b,mod))

矩阵乘法 

埃式筛

 大数分解(质因数分解)

import sys  #设置递归深度
import collections  #队列
import itertools  # 排列组合
import heapq  #小顶堆
import math
sys.setrecursionlimit(300000)#对一个数进行大数分解
ans=0
n=int(input())
for i in range(2,int(math.sqrt(n))+1):if n%i==0:  #发现质数ans+=1#print(i)  # 打印质数约数while n%i==0:  # 消除这个质数n=n//i
if n>1:#print(n)  # 打印质数约数ans+=1
print(ans)

6.组合数学

加法原理

鸽巢原理 

 杨辉三角

import os
import sys# 骗分写法
n=int(input())
a=[[1],[1,1]]
for i in range(1,500): # 50-1+2行b=[]temp=0for j in range(i): # 根据上一行i计算temp=a[i][j]+a[i][j+1]b.append(temp)a.append([1]+b+[1])
# print(a)
b=[]
for i in range(501):  #进行队列拼接b=b+a[i]
print(b.index(n)+1)  # 直接通过队列值找索引
import os
import sys# 请在此输入您的代码
n=[0,1,1,1,1,2,1]
#n=[[0],[1,1],[1,2,1]]
last=[1,2,1]
for i in range(50):new=[]for a,b in zip(last+[0],[0]+last):new.append(a+b)n.append(new)last=newm=int(input())
print(n.index(m))

 7.计算几何

点积

叉积

点跟直线关系

 

8.图论算法(图论章节http://t.csdn.cn/pitI6)

存边方式

数组存边

临接矩阵

 邻接表

 Floyd算法

import os
import sys# 请在此输入您的代码
#floyd算法,多对多def floyd():global dpfor i in range(1,n+1):for j in range(1,n+1):for k in range(1,n+1):dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j])n,m,q = map(int,input().split())
inf=2**120
dp=[[inf]*(n+1) for i in range(n+1)]
choice=[]
for i in range(m):u,v,w=map(int,input().split())dp[u][v]=wdp[v][u]=w
for i in range(q):s,d = map(int,input().split())choice.append((s,d))
floyd()
for s,d in choice:if dp[s][d]!=inf:print(dp[s][d])continueprint(-1)

Dijstra算法

import heapq  # 导入堆
def dij(s):done=[0 for i in range(n+1)]  # 记录是否处理过hp=[]  #堆dis[s]=0heapq.heappush(hp,(0,s))   #入堆,小顶堆while hp:u=heapq.heappop(hp)[1] #出堆元素结点if done[u]: #当前结点处理过continuedone[u]=1for i in range(len(G[u])): #遍历当前结点的邻居v,w =G[u][i]if done[v]:continuedis[v]=min(dis[v],dis[u]+w)  # 更新当前结点邻居的最短路径heapq.heappush(hp,(dis[v],v))n,m = map(int,input().split())#
s=1  # 从1开始访问
G=[[]for i in range(n+1)]   #邻接表存储
inf = 2**50
dis = [inf]*(n+1) #存储距离
for i in range(m):# 存边,这里是单向边u,v,w = map(int,input().split())G[u].append((v,w))  #记录结点u的邻居和边长dij(s)
for i in range(1,n+1):if dis[i]==inf:print("-1",end=' ')else:print(dis[i],end=' ')
import sys  #设置递归深度
import collections  #队列
import itertools  # 排列组合
import heapq  #小顶堆
import math
sys.setrecursionlimit(300000)def dij():dist[1]=0  #很重要for _ in range(n-1): # 还有n-1个点没有遍历t=-1for j in range(1,n+1):if st[j]==0 and (t==-1 or dist[t]>dist[j]):  #找到没处理过得最小距离点t=jfor j in range(1,n+1):dist[j]=min(dist[j],dist[t]+gra[t][j])  # t-j的距离,找最小值st[t]=1  # 标记处理过return dist[n]n,m=map(int,input().split())#下标全部转为从1开始
stay=[0]+list(map(int,input().split()))
stay[n]=0   
gra = [[float('inf')] * (n+1) for _ in range(n+1)]
dist = [float('inf')] * (n+1)
st=[0]*(n+1)  # 标志是否处理for i in range(m):u,v,w=map(int,input().split()) #这里重构图gra[u][v]=stay[v]+wgra[v][u]=stay[u]+wprint(dij())

Bellman-ford算法

n,m=map(int,input().split())
t=[0]+list(map(int,input().split()))
e=[]  #简单的数组存边for i in range(1,m+1):a,b,c = map(int,input().split())e.append([a,b,c])  # 双向边e.append([b,a,c])dist=[2**50]*(n+1)
dist[1]=0for k in range(1,n+1): # 遍历每个点,n个点,执行n轮问路for a,b,c in e:  # 检查每条边,每一轮问路,检查所有边res=t[b]if b==n:res=0dist[b]=min(dist[b],dist[a]+c+res)  # 更新路径长度print(dist[n])

9.常用库

math

datetime   datetime.date()     date.days()     date.timedelta

sys中的设置最大递归深度(sys.setrecursionlimit(3000000))  sys.exit()

collections.deque(队列)   

itertools.combinations(list,n)(组合),itertools.permutations(list,n)(排列)

  heapq(小顶堆)   heapq.heappush(list,(0,s))   # 将list堆化,向list添加元素(0,s)

10.前缀和、差分

http://t.csdn.cn/rQs6M

相关文章:

蓝桥杯第26天(Python)考前挣扎

题型&#xff1a; 1.思维题/杂题&#xff1a;数学公式&#xff0c;分析题意&#xff0c;找规律 2.BFS/DFS&#xff1a;广搜&#xff08;递归实现&#xff09;&#xff0c;深搜&#xff08;deque实现&#xff09; 3.简单数论&#xff1a;模&#xff0c;素数&#xff08;只需要…...

WuThreat身份安全云-TVD每日漏洞情报-2023-04-04

漏洞名称:RSA NetWitness Platform 内存损坏漏洞 漏洞级别:中危 漏洞编号:CVE-2022-47529,CNNVD-202303-2419 相关涉及:RSA NetWitness Platform 12.2之前版本 漏洞状态:POC 参考链接:https://tvd.wuthreat.com/#/listDetail?TVD_IDTVD-2023-07193 漏洞名称:EyouCms <1.5.…...

【C++】Step by Step的格式化代码风格是这样的吗?

文章目录前言一、依赖二、配置总结前言 本节从0开始讲解如何格式化自己的代码风格&#xff0c;使用vscode插件来完成&#xff0c;本节的所有配置都会在星球同步哦~ 一、依赖 本次使用的是clang-format插件&#xff0c;具体安装比较简单&#xff1a; mac系统&#xff1a; br…...

aspnet030高校学生团体管理系统sqlserver

net030高校学生团体管理系统 . 1.用户基本信息管理模块&#xff1a;录入、修改、删除、查询、统计、打印等功能 2.学生成绩管理模块&#xff1a;录入、修改、删除、查询、统计、打印等功能 3.学生团体信息管理模块&#xff1a;录入、修改、删除、查询、统计、打印等功能 4.教…...

学习HM微博项目第10天

步骤&#xff1a;发微博12-表情键盘06-点击表情 -> 发微博13-表情键盘07-插入表情和封装textView -> 发微博14-表情键盘08-长按表情 -> 发微博15-表情键盘09-最近表情 -> 发微博16-表情键盘10-最近表情完善 发微博12-表情键盘06-点击表情 APP的演示动画&#xff…...

0204强连通性-有向图-数据结构和算法(Java)

文章目录1 概述2 强连通分量2.1 定义2.2 Kosaraju算法2.2.1 算法实现2.2.2算法测试2.2.3 算法理解3 强连通性结语1 概述 定义。如果2个顶点是相互可达的&#xff0c;则称它们为强连通的。如果一幅有向图中的任意两个顶点都是强连通的&#xff0c;则称这幅有向图也是强连通的。 …...

ElasticSearch集群

5.2 IK分词器简介 IKAnalyzer是一个开源的&#xff0c;基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始&#xff0c;IKAnalyzer已经推出 了3个大版本。最初&#xff0c;它是以开源项目Lucene为应用主体的&#xff0c;结合词典分词和文法分析算法的中文分…...

音视频基础概念(6)——视频基础

网上冲浪时&#xff0c;我们会接触到网络流媒体和本地视频文件。常见的视频文件格式有MP4、MKV、AVI等。在流媒体网站上看见视频常用的协议有HTTP、RTSP、RTMP、HLS等。视频技术较为复杂&#xff0c;包括视频封装、视频编解码、视频播放和视频转码等内容。1 视频基础概念当下市…...

【Python网络蜘蛛】基础 - 多线程和多进程的基本原理

文章目录多线程和多进程的基本原理多线程的含义并发和并行Python中的多线程和多进程多线程和多进程的基本原理 在编写爬虫程序的时候&#xff0c;为了提高爬取效率&#xff0c;我们可能会同时运行多个爬虫任务&#xff0c;其中同样涉及多进程和多线程。 多线程的含义 先了解一…...

linux C/C++文件路径操作

标题1、 access函数查找文件夹是否存在/文件是否有某权限 头文件&#xff1a; 在windows环境下头文件为&#xff1a; #include <io.h> 在linux环境下头文件为&#xff1a; #include <unistd.h> 函数原型&#xff1a; int access(const char* _Filename, int _Acce…...

Baumer工业相机堡盟相机如何使用BGAPI SDK和Opencv联动实现图像转换成视频(C#)

Baumer工业相机堡盟相机如何使用BGAPI SDK和Opencv联动实现图像转换成视频Baumer工业相机Baumer工业相机SDK技术背景代码分析第一步&#xff1a;先引用OpenCV库第二步&#xff1a;引用图像文件夹生成视频工业相机图像通过OpenCV转为视频的优点工业相机图像转为视频的行业应用​…...

Redis常用命令以及如何在Java中操作Redis

前言Redis是一个基于内存的key-value结构数据库&#xff0c;是互联网技术领域使用最为广泛的存储中间件。Redis基于内存存储&#xff0c;读写性能高&#xff0c;适合存储热点数据&#xff08;热点商品、资讯、新闻&#xff09;。Redis是一个开源的内存中的数据结构存储系统&…...

ASEMI代理AD7980BRMZRL7原装ADI(亚德诺)车规级AD7980BRMZRL7

编辑&#xff1a;ll ASEMI代理AD7980BRMZRL7原装ADI&#xff08;亚德诺&#xff09;车规级AD7980BRMZRL7 型号&#xff1a;AD7980BRMZRL7 品牌&#xff1a;ADI/亚德诺 封装&#xff1a;MSOP-10 批号&#xff1a;2023 安装类型&#xff1a;表面贴装型 AD7980BRMZRL7 汽车…...

leetcode141:环形链表

给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&#xff08;…...

lattice diamond软件使用

1.diamond软件破解&#xff1a; lisence坚果云下载&#xff1b;或者这个博主操作环境变量设置&#xff1a; 2. 调用IP 有两种方式&#xff0c;依据芯片或者软件版本改变。 传统的IPexpress&#xff0c;每个IP单独例化。 新出的Clarity&#xff0c;多个IP在同一个顶层内调用…...

scala泛型

目录 类型参数 泛型函数&#xff1a; 协变&#xff0c;逆变&#xff0c;不变 泛型上下限&#xff1a; 上下文限定&#xff1a; 泛型是一种类型参数&#xff0c;该类型参数可以用在类、接口和方法中&#xff0c;分别被称为泛型类、泛型接口、泛型方法 类型参数 调用时不指定…...

程序员与ChatGPT的日常问答

程序员与ChatGPT的日常问答GPT3.5与GPT4.0能力对比技术问题工具问题编解码问题其他问题本文记录下调教ChatGPT的日常。 GPT3.5与GPT4.0能力对比 Q&#xff1a;采用同一个问题提问&#xff0c;对比下GPT3.5和GPT4.0的能力区别&#xff0c;比如&#xff1a;帮我列一个小白入门音频…...

如何创建高效的Prompt和ChatGPT等大语言模型AI对话

大语言模型&#xff0c;如OpenAI的GPT-4&#xff0c;是一种基于深度学习技术的自然语言处理工具&#xff0c;它可以理解自然语言并为用户提供有价值的回答。然而&#xff0c;要从大语言模型中获得高质量的回答&#xff0c;你需要学会如何高效地提问。本文将从原理出发&#xff…...

043:cesium加载Bing地图(多种形式)

第043个 点击查看专栏目录 本示例的目的是介绍如何在vue+cesium中加载加载Bing地图。这里显示4种形式的地图,分别为:AERIAL、ROAD、CANVAS_DARK、AERIAL_WITH_LABELS。参考后面的API,还有其他几种形式。 直接复制下面的 vue+cesium源代码,操作2分钟即可运行实现效果. 文章…...

vscode代码片段生成

在刚学习vue的时候&#xff0c;有些代码片段是经常写的&#xff0c;在vscode中写一个代码片段可以帮助快速生成。 生成步骤&#xff1a; VSCode中的代码片段有固定的格式&#xff0c;所以我们一般会借助于一个在线工具来完成。 具体的步骤如下: 第一步&#xff0c;复制自己需…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...