当前位置: 首页 > news >正文

【1017. 负二进制转换】

来源:力扣(LeetCode)

描述:

给你一个整数 n ,以二进制字符串的形式返回该整数的 负二进制base -2)表示。

注意, 除非字符串就是 "0",否则返回的字符串中不能含有前导零。

示例 1:

输入:n = 2
输出:"110"
解释:(-2)2 + (-2)1 = 2

示例 2:

输入:n = 3
输出:"111"
解释:(-2)2 + (-2)1 + (-2)0 = 3

示例 3:

输入:n = 4
输出:"100"
解释:(-2)2 = 4

提示:

  • 0 <= n <= 109

方法一:模拟进位

思路与算法

对于「二进制数」我们可以很直观地得到以下结论:

  • 对于 2i,如果 i 为偶数时,此时 2i = (−2)i
  • 对于 2i,如果 i 为奇数时,此时 2i = (−2)i+1 + (−2)i

因此自然可以想到将 n 转换为 −2 的幂数和,即此时 n= ∑i=0m\sum_{i=0}^mi=0m C×(−2)i,由于 −2 进制的每一位只能为 0 或 1,需要对每一位进行加法「进位」运算即可得到完整的「负二进制」数。对于「负二进制」数,此时需要思考一下进位规则。对于 C×(−2)i,期望得到如下变换规则:

  • 如果 C 为奇数则需要将等式变为 C × (−2)i = a × (−2)i+1 + (−2)i,此时第 i 位为 1,第 i + 1 位需要加上 a;

  • 如果 C 为偶数则需要将等式变为 C × (−2)i = a × (−2)i+1 ,此时第 i 位为 0,第 i + 1 位需要加上 a;

根据以上的变换规则,只需要求出 a 即可。假设当前数位上的数字为 val,当前的位上保留的余数为 r,在 x 进制下的进位为 a,根据「进位」的运算规则可知 val = a × x + r,此时可以得到进位 a = val−rx\frac{val - r} {x}xvalr。根据题意可知,「负二进制」数的每一位上保留的余数为 0 或 1,因此可以计算出当前的余数 r,由于在有符号整数的均采用补码表示,最低位的奇偶性保持不变,因此可以直接取 val 的最低位即可,此时可以得到 r = val & 1。根据上述等式可以知道,当前数位上的数字为 val 时,此时在「负二进制」下向高位的进位为 a = val−(val&1)−2\frac{val - (val \& 1)} {-2}2val(val&1)
基于以上进位规则,将变换出来的数列进行进位运算即可得到完整的「负二进制」数。整个转换过程如下:

  • 将 n 转换为二进制数,并将二进制数中的每一位转换为「负二进制」中的每一位,变换后的数列为 bits;
  • 将 bits 从低位向高位进行「进位」运算,即将 bits 中的每一位都变为 0 或者 1;
  • 去掉前导 0 以后,将 bits 转换为字符串返回即可。

代码:

class Solution {
public:string baseNeg2(int n) {if (n == 0) {return "0";}vector<int> bits(32);for (int i = 0; i < 32 && n != 0; i++) {if (n & 1) {bits[i]++;if (i & 1) {bits[i + 1]++;}}n >>= 1;}int carry = 0;for (int i = 0; i < 32; i++) {int val = carry + bits[i];bits[i] = val & 1;carry = (val - bits[i]) / (-2);}int pos = 31;string res;while (pos >= 0 && bits[pos] == 0) {pos--;}while (pos >= 0) {res.push_back(bits[pos] + '0');pos--;}return res;}
};

执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:5.9 MB, 在所有 C++ 提交中击败了33.33%的用户
复杂度分析
时间复杂度:O( C ),其中 C = 32。需要对 n 转换为二进制位,需要的时间复杂度为 O(logn),然后需要对其进行二进制位的中每一位进行「负二进制进位」运算,由于整数有 32 位,因此需要「负二进制进位」运算 32 次即可。
空间复杂度:O( C ),其中 C = 32。需要对 n 转换为二进制位,由于整数最多只有 32 位,在此每次采取固定的存储空间为 O(32)。

方法二:进制转换

思路与算法

当基数 x > 1 时,将整数 n 转换成 x 进制的原理是:令 n0 = n,计算过程如下:

  • 当计算第 0 位上的数字时,此时 n1 = ⌊ n0x{n_0} \over xxn0⌋,n0 = n1 × x + r,其中 0 ≤ r < x;
  • 当计算第 i 位上的数字时,此时 ni+1 = ⌊ nix{n_i} \over xxni ⌋,ni = ni+1 × x + r,其中 0 ≤ r < x;

按照上述计算方式进行计算,直到满足 ni = 0 结束。

如果基数 x 为负数,只要能确定余数的可能取值,上述做法同样适用。由于「负二进制」表示中的每一位都是 0 或 1,因此余数的可能取值是 0 和 1,可以使用上述做法将整数 n 转换成「负二进制」。具体转换过程如下:

  • ​如果 n = 0 则返回 “0",n = 1 则直接返回 “1";
  • 如果 n > 1 则使用一个字符串记录余数,将整数 n 转换成「负二进制」,重复执行如下操作,直到 n = 0;
    • 计算当前 n 的余数,由于当前的余数只能为 0 或 1,由于有符号整数均采用补码表示,最低位的奇偶性保持不变,因此可以直接取 C 的最低位即可,此时直接用 n&1 即可得到最低位的余数,将余数拼接到字符串的末尾。
    • 将 n 的值减去余数,然后将 n 的值除以 −2。

上述操作结束之后,将字符串翻转之后得到「负二进制」数。

代码:

class Solution {
public:string baseNeg2(int n) {if (n == 0 || n == 1) {return to_string(n);}string res;while (n != 0) {int remainder = n & 1;res.push_back('0' + remainder);n -= remainder;n /= -2;}reverse(res.begin(), res.end());return res;}
};

执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:5.8 MB, 在所有 C++ 提交中击败了75.00%的用户
复杂度分析
时间复杂度:O(logn),其中 n 是给定的整数。整数 n 对应的「负二进制」表示的长度是 logn,需要生成「负二进制」表示的每一位。
空间复杂度:O(1)。除返回值外,不需要额外的空间。

方法三:数学计算

思路与算法

根据题意可知,32 位「负二进制」数中第 i 位则表示(−2)i,当 i 为偶数时,则 (−2)i = 2i,当 i 为奇数时,则 (−2)i = −2i ,因此可以得到其最大值与最小值分别为如下:

  • 最大值即所有的偶数位全部都为 1,奇数位全为 0,最大值即为 0x55555555 = 1,431,655,765;
  • 最小值即所有的偶数位全部都为 0,奇数位全为 1,最小值即为 0xAAAAAAAA = −2,863,311,530;
  • 0x55555555, 0xAAAAAAAA 均为「十六进制」进制原码表示;

令 maxVal = 0x55555555,由于题目中 n 给定的范围为 0 ≤ n ≤ 109,因此一定满足 maxVal > n。设 maxVal 与 n 的差为 diff,则此时 diff = maxVal − n,如果我们将 maxVal 在「负二进制」表示下减去 diff,那么得到的「负二进制」一定为 n 的「负二进制」。已知 maxVal 中的偶数位全为 1,奇数位全为 0,此时的减法操作可以用异或来实现:

  • 对于 diff 中偶数位为 1 的位,在 maxVal 中需要将其置为 0,此时 maxVal 中偶数位全部为 1,1 ⊕ 1 = 0,偶数位异或操作即可将需要的位置为 0;
  • 对于 diff 中奇数位为 1 的位,在 maxVal 中需要将其置为 1,此时 maxVal 中奇数位全部为 0,0 ⊕ 1 = 1,奇数位异或操作将需要的位置为 1,
    根据以上推论可以知道,「负二进制」减法等同于 maxVal ⊕ diff。按照上述方法可以知道 n 的「负二进制」数等于 ma x Val ⊕ (maxVal − n),我们求出 n 的「负二进制」数,然后将其转换为二进制的字符串即可。

代码:

class Solution {
public:string baseNeg2(int n) {int val = 0x55555555 ^ (0x55555555 - n);if (val == 0) {return "0";}string res;while (val) {res.push_back('0' + (val & 1));val >>= 1;}reverse(res.begin(), res.end());return res;}
};

执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:5.7 MB, 在所有 C++ 提交中击败了98.15%的用户
复杂度分析
时间复杂度:O(logn),其中 n 是给定的整数。整数 n 对应的「负二进制」表示的长度是 logn,需要生成「负二进制」表示的每一位。
空间复杂度:O(1)。除返回值外,不需要额外的空间。
author:LeetCode-Solution

相关文章:

【1017. 负二进制转换】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你一个整数 n &#xff0c;以二进制字符串的形式返回该整数的 负二进制&#xff08;base -2&#xff09;表示。 注意&#xff0c; 除非字符串就是 "0"&#xff0c;否则返回的字符串中不…...

C语言实现插入排序与希尔排序

目录 一&#xff0c;插入排序 插入排序C语言实现&#xff08;升序&#xff09; 1&#xff0c;将新元素插入到有序序列 2&#xff0c;循环的开始与终止 二&#xff0c;希尔排序 希尔排序C语言实现&#xff08;升序&#xff09; 1&#xff0c;单趟&#xff1a; 2&#x…...

第九章-DOM与CSS

style属性 文档中每个元素节点都有一个属性style。style属性包含着元素样式&#xff0c;查询这个属性将返回一个对象而不是一个简单的字符串。样式都存放在这个style对象的属性里。 var element getElementById("example") //查看颜色属性 element.style.color //…...

蓝桥杯真题练习

小蓝在玩一个寻宝游戏, 游戏在一条笔直的道路上进行, 道路被分成了 nn 个方格, 依次编号 1 至 nn, 每个方格上都有一个宝物, 宝物的分值是一个整数 (包括正数、负数和零), 当进入一个方格时即获得方格中宝物的分值。小蓝可 以获得的总分值是他从方格中获得的分值之和。 小蓝开始…...

插入排序的简单理解

详细描述 插入排序的基本思想是&#xff1a;将一个记录插入到已经排好序的有序表中&#xff0c;从而得到一个新的、记录数增 1 的有序表。 在其实现过程中使用双层循环&#xff0c;外层循环针对除了第一个元素之外的所有元素&#xff0c;内层循环针对当前元素前面的有序表进行…...

Springboot框架集成Websocket通信方式

Websocket实现了“服务器”主动向“客户端”发送数据,改变了以往通过轮询、长轮训、长连接等方式获取服务器端数据的方式。 一、Websocket有三种不同的用场景,单播、广播和组播; (一)、单播(Unicast) 单播是客户端与服务器之间的“一对一”的连接。是在一个单个的发送…...

将json数据分组

在工作中有时需要根据业务需要&#xff0c;将大量数据进行处理分成几个一组 // 例如要将下方数据进行处理 var stuCount [{"id": "1612321835288","libraryCode": "D","regionCode": "A","positionCode&qu…...

从零开始实现一个C++高性能服务器框架----Socket模块

此项目是根据sylar框架实现&#xff0c;是从零开始重写sylar&#xff0c;也是对sylar丰富与完善 项目地址&#xff1a;https://gitee.com/lzhiqiang1999/server-framework 简介 项目介绍&#xff1a;实现了一个基于协程的服务器框架&#xff0c;支持多线程、多协程协同调度&am…...

ld: library not found for -lcrt0.o

ld: library not found for -lcrt0.o 背景&#xff1a; Mac 系统编译的时候报错 语言&#xff1a;golang 原因&#xff1a; 代码使用了静态编译&#xff0c;-static。stack overflow 上说 This option will not work on Mac OS X unless all libraries (including libgcc.a…...

接口测试和功能测试的区别有哪些?说一些你不知道的知识

目录 接口测试和功能测试的区别 目的 测试范围 测试方法 重要性 ​编辑 举个例子 对于接口测试 对于功能测试 ​编辑 总结 接口测试和功能测试是软件测试中的两种常见测试类型&#xff0c;主要用于评估软件系统的质量。尽管这两种测试都是为了评估软件系统的性…...

深度学习实战——不同方式的模型部署(CNN、Yolo)

忆如完整项目/代码详见github&#xff1a;https://github.com/yiru1225&#xff08;转载标明出处 勿白嫖 star for projects thanks&#xff09; 目录 系列文章目录 一、实验综述 1.实验工具及及内容 2.实验数据 3.实验目标 4.实验步骤 二、ML/DL任务综述与模型部署知识…...

【论文阅读】GNN阅读笔记

A gentle introduction on gnn 前言 发表在distill的文章 图神经网络在应用上才刚刚开始 搭建了一个GNN playground 什么是图 图是表示实体之间的关系 可以分别表示成点向量、边向量、图向量 图可以分为有向图和无向图 数据是怎么表示成图 图片表示成图&#xff1a; …...

QT常用控件——QTreeWidget(树控件),QTableWidget控件

目录 ★先开个小灶,在此插句话:【有关Halcon与Qt联编变量转换】 QTreeWidget树控件 QTableWidget控件...

为什么学校购买小型数控机床而不是大型工业数控机床?

CNC 机器是计算机控制的设备&#xff0c;可以高精度和准确度地切割、雕刻、钻孔或雕刻各种材料。 它们广泛应用于制造、工程、设计和艺术行业。 CNC 机器具有不同的尺寸和功能&#xff0c;从小型台式机到大型工业机型。 人们可能想知道为什么学校会选择购买小型 CNC 机器而不是…...

【Go自学】一文搞懂Go append方法

我们先看一下append的源码 // The append built-in function appends elements to the end of a slice. If // it has sufficient capacity, the destination is resliced to accommodate the // new elements. If it does not, a new underlying array will be allocated. //…...

【压测】通过Jemeter进行压力测试(超详细)

文章目录背景一、前言二、关于JMeter三、准备工作四、创建测试4.1、创建线程组4.2、配置元件4.3、构造HTTP请求4.4、添加HTTP请求头4.5、添加断言4.6、添加察看结果树4.7、添加Summary Report4.8、测试计划创建完成五、执行测试计划总结背景 通过SpringCloudGateway整合Nacos进…...

C# | 上位机开发新手指南(七)加密算法

上位机开发新手指南&#xff08;七&#xff09;加密算法 文章目录上位机开发新手指南&#xff08;七&#xff09;加密算法前言加密算法的分类对称加密算法和非对称加密算法流加密算法和块加密算法分组密码和序列密码哈希函数和消息认证码对称加密与非对称对称加密优点缺点对称加…...

实验一 跨VLAN访问

目录 一、按照拓扑图配置VLAN&#xff0c;并实现跨VLAN间的访问。 二、实验环境 三、实验步骤 一、按照拓扑图配置VLAN&#xff0c;并实现跨VLAN间的访问。 1、配置好交换机的VLAN和各个终端的地址&#xff0c;实现各个VLAN内能连通。 2、开启两个交换机的VTY连接&#xff0…...

通信算法之130:软件无线电-接收机架构

1. 超外差式接收机 2.零中频接收机 3.数字中频接收机...

C++编程大师之路:从入门到精通-C++基础入门

文章目录前言主要内容C基础入门初识C第一个C程序注释变量常量关键字标识符命名规则数据类型整型sizeof关键字实型&#xff08;浮点型&#xff09;字符型转义字符字符串型布尔类型 bool数据的输入运算符算术运算符赋值运算符比较运算符逻辑运算符程序流程结构选择结构if语句三目…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...