当前位置: 首页 > news >正文

想要的古风女生头像让你快速get

如今我看到很多人都喜欢用古风女生当作头像,那么今天我就来教大家如何快速得到一张超美的古风女生头像~

上图就是我使用 APISpaceAI作画(图像生成)服务 快速生成的古风女生头像,不仅可以限定颜色,还可以选择『宝石镶嵌』或『花卉造型』这样的细节修饰词!小说插画、聊天头像、绘画参考,超多场景都可以使用。

描述语 : artstation , pixiv ,韩系,古风女生,宝石发簪,头像,华丽背景。

试着使用上面的文字描述 ,马上就可以生成『朱唇一点桃花殷,宿妆娇羞偏善囊』的古风少女哦!

好了~现在就来教大家如何get古风女生头像!

1.注册登录 APISpace 后,进入 【AI作画详情页】,领取【免费流量】
2.点击【测试API】,根据参数提示,填写好相应的参数值
3.将返回参数的key值复制填写至【获取生成图片API】的参数值中,请求即可获得图片

AI作画 接口参数说明:

  • prompt:生成图片的关键词,图像进行描述,有内容风格等信息进行描述,支持中英文。
  • negative_prompt:生成图片的反关键词,让生成的图片不包含什么。
  • default_negative_prompt:使用apispace提供的默认反关键词,避免出现低质量图片,和不完整肢体身体的动物和人物。1为使用,0为不使用,不填默认使用。
  • sampler_name:图像生成的采样器选择,不同采样器会影响生成的图片的风格,构图,默认为Euler。
  • steps:生成图片迭代次数,取值在1到50之间,越高图片越精细,默认为30,一般30次就足够了,迭代次数越大,生成图片时间越长。
  • width:生成图片的宽度,默认为512,取值在50到1024之间。
  • height:生成图片的高度,默认为512,取值在50到1024之间。
  • model:选择生成图片的模型,有“通用”和“二次元”。
  • cfg_scale:指导程度参数,设置越高生成的图片就会越接近prompt,越低会越脱离prompt但是会产生有创意的结果。取值范围1到20,默认为7,推荐5,7,12。

相关文章:

想要的古风女生头像让你快速get

如今我看到很多人都喜欢用古风女生当作头像,那么今天我就来教大家如何快速得到一张超美的古风女生头像~ 上图就是我使用 APISpace 的 AI作画(图像生成)服务 快速生成的古风女生头像,不仅可以限定颜色,还可以选择『宝石镶嵌』或『花卉造型』这…...

传统企业数字化转型,到底难在哪里?

数字化转型过程中面临最大的挑战和问题是什么?这篇整理了企业在数字化转型过程中普遍面临的9大问题和挑战以及如何解决这些问题,希望能够对各位企业数字化转型有多启发和帮助。 01 企业数字化转型三大现状 在梳理企业数字化转型问题之前,我想…...

Python:青蛙跳杯子(BFS)

题目描述 X 星球的流行宠物是青蛙,一般有两种颜色:白色和黑色。 X 星球的居民喜欢把它们放在一排茶杯里,这样可以观察它们跳来跳去。 如下图,有一排杯子,左边的一个是空着的,右边的杯子,每个…...

6.10 谱分解

文章目录计算方法代码实现计算方法 单纯矩阵normal matrix指的是符号ATAAATA^TAAA^TATAAAT的矩阵,他们的特征值互异。此外,单纯矩阵还有个特点,他们的特征空间彼此正交。   对于单纯矩阵,存在以下的谱定理Spectral theorem&…...

MySQL入门篇-MySQL 行转列小结

备注:测试数据库版本为MySQL 8.0 需求:求emp表各个岗位的工资之和,如无,用0代替 如需要scott用户下建表及录入数据语句,可参考:scott建表及录入数据sql脚本 CASE语法 SELECT deptno,ifnull(sum(case when job MANAGER then sal else 0 …...

项目管理常见的十大难题及其症状

01缺少维护文档时常,项目工作紧张时,第一个去掉的就是文档工作。有时即使项目有时间,也不会创建文档;或是创建了文档,却很少在项目进行过程中维护它。症状产品与需求文档不符;技术文档过时,无法保证技术的延…...

技术方案模板

0.基本原则 1.可量化,很大、很多、很高 到底是多少?基本没影响,到底有没有影响什么情况下有影响? 2.可实施,结合实际情况最终可落地 3.可指导,非方案制定人能理解,能在尽量少的人工沟通的情况下实现方案 4.可复用,设计的方案,再次出现类似需求时可以做到少开发或不…...

MySQL中对于单表和多表的操作

一、单表查询素材: 表名:worker-- 表中字段均为中文,比如 部门号 工资 职工号 参加工作 等显示所有职工的基本信息。mysql8.0 [chap03]>select * from worker;查询所有职工所属部门的部门号,不显示重复的部门号。mysql8.0 [cha…...

MFI认证

一、什么是MFI认证? 苹果MFI认证,是苹果公司(Apple Inc.)对其授权配件厂商生产的外置配件的一种使用许可,MFi认证是apple公司Made for iPhone/iPad/iPod的英文缩写。是指分别为连接iPhone/iPad/iPod而特别设计的电子配件。 [图片] 二、iOS外设连接的几种方式 [图片] 这…...

Vue中mixins的使用

文章目录mixins介绍mixins特点mixins介绍 Mixins:在引入组件之后与组件中的对象和方法进行合并,相当于扩展了父组件的对象与方法,可以理解为形成了一个新的组件。混入 (mixins):是一种分发 Vue 组件中可复用功能的非常灵活的方式…...

【PyQt】PyQt学习(一)框架介绍+环境搭建

简介 写在最前面的话 在决定学习、使用一个框架之前需要考量如下几点: 框架运行效果;框架应用范围;框架学习成本和迁移成本;实现自己所需功能的开发效率; 只有综合考量如上四个方面,才能更好地选择适合…...

浅谈前端设计模式:策略模式和状态模式的异同点

一、策略模式 策略模式是定义一系列的算法,把它们一个个封装起来, 并且使它们可相互替换。 而且策略模式是重构小能力,特别适合拆分“胖逻辑”。 这个定义乍一看会有点懵,不过通过下面的例子就能慢慢理解它的意思。 先来看一个真实场景 某次活动要做…...

线性杂双功能PEG试剂OPSS-PEG-Acid,OPSS-PEG-COOH,巯基吡啶聚乙二醇羧基

英文名称:OPSS-PEG-COOH,OPSS-PEG-Acid 中文名称:巯基吡啶-聚乙二醇-羧基 OPSS-PEG-COOH是一种具有OPSS和羧基的线性杂双功能PEG试剂。它是一种有用的带有PEG间隔基的交联剂。OPSS代表正吡啶基二硫化物或邻吡啶基二硫代,与硫醇、…...

开发微服务电商项目演示(四)

一&#xff0c;网关服务限流熔断降级第1步&#xff1a;启动sentinel-dashboard控制台和Nacos注册中心服务第2步&#xff1a;在网关服务中引入sentinel依赖<!-- sentinel --> <dependency><groupId>com.alibaba.cloud</groupId><artifactId>sprin…...

【C语言学习笔记】:静态库

一、什么是库 库是写好的现有的&#xff0c;成熟的&#xff0c;可以复用的代码。现实中每个程序都要依赖很多基础的底层库&#xff0c;不可能每个人的代码都从零开始&#xff0c;因此库的存在意义非同寻常。 本质上来说库是一种可执行代码的二进制形式&#xff0c;可以被操作…...

社科院与杜兰大学中外合作办学金融管理硕士——30+的年龄在职读研有必要吗?

说起读研&#xff0c;年龄在什么区间最合适呢&#xff1f;上次有位咨询的同学反馈年龄已经快35岁了&#xff0c;有一份不错的工作&#xff0c;但又不甘心止步于此&#xff0c;想要通过提升学历升职加薪&#xff0c;但又纠结自己是否能静下心来学习、是否能顺利毕业、拿到的证书…...

2.13作业【设备树解析,按自己理解】

设备树定义 设备树&#xff08;device tree是描述硬件信息的一种树形结构&#xff0c;设备书文件在linux内核启动后被内核解析。描述一个硬件设备信息的节点我们叫做设备节点&#xff0c;一个设备节点内部包含当前硬件的多个不同属性&#xff0c;相同节点不同属性是以链式结构存…...

《NFL星计划》:巴尔的摩乌鸦·橄榄1号位

巴尔的摩乌鸦&#xff08;英语&#xff1a;Baltimore Ravens&#xff09;是一支职业美式橄榄球球队位于马里兰州的巴尔的摩。他们现时为美国美式橄榄球联合会的北区进行比赛&#xff0c;其主场为M&T银行体育场。乌鸦队曾在2000年和2012年取得超级碗冠军。 巴尔的摩乌鸦 成…...

Allegro如何设置自动保存和自动保存的时间操作指导

Allegro如何设置自动保存和自动保存的时间操作指导 做PCB设计的时候,自动保存软件是一个必要的功能,Allegro同样支持设置自动保存,而且可以设置自动保存的时间。 如下图 具体操作如下 点击Setup点击User Preferences...

Kotlin实现简单音乐播放器

关于音乐播放器&#xff0c;我真的是接触比较多&#xff0c;听歌作为我第一大爱好&#xff0c;之前也用Java设计过音乐播放器&#xff0c;感兴趣的同学可以阅读&#xff1a;Android Studio如何实现音乐播放器&#xff08;简单易上手&#xff09;和 Android Studio实现音乐播放器…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...