当前位置: 首页 > news >正文

数据分析工具集合:Tableau入门及其他工具简介

目录

一、Tableau简介

1、下载链接

2、使用技巧

二、其他常用数据分析工具

1、Microsoft Excel简介

1.1、下载链接

1.2、使用技巧

2、Python简介

2.1、下载链接

2.2、常用库的安装方式和使用技巧

2.2.1、Pandas

2.2.2、NumPy

2.2.3、Matplotlib

3、R语言简介

3.1、下载链接

3.2、常用库的安装方式和使用技巧

3.2.1、ggplot2

3.2.2、dplyr

3.2.3、tidyr

4、Power BI简介

4.1、下载链接

4.2、使用技巧


数据分析是从大量的数据中获取有用信息、发现规律和趋势的过程。为了更好地进行数据分析,我们需要使用一些工具来帮助我们。本教程将为您介绍数据分析工具Tableau,以及其他一些常用工具。

一、Tableau简介

Tableau 是一款功能强大的数据可视化工具,它可以帮助您轻松地将数据转换为易于理解的视觉效果。Tableau 的主要特点是拖放式操作,即使没有编程基础,也能进行数据处理和可视化。

1、下载链接

Tableau 提供了多个版本,包括免费的个人版(Tableau Public)和付费的专业版(Tableau Desktop)。您可以根据自己的需求选择合适的版本。
Tableau Public(免费版)
Tableau Desktop(付费版)

2、使用技巧

  1. 数据导入:在 Tableau 中,您可以通过点击“连接数据”按钮,从各种数据源(如 Excel、CSV、SQL 数据库等)导入数据。

  2. 数据清洗:在“数据源”选项卡中,您可以对数据进行预处理,包括更改字段类型、重命名字段等。

  3. 创建工作表:在“数据源”选项卡中,您可以对数据进行预处理,包括更改字段类型、重命名字段等。

  4. 创建仪表板:仪表板可以帮助您组合多个工作表,以便于您展示和共享分析结果。在“仪表板”选项卡中,拖动需要展示的工作表,调整布局和样式。

  5. 筛选器与参数:通过使用筛选器和参数,您可以让用户根据自己的需求动态地调整图表。筛选器可以限制显示的数据范围,而参数可以让用户输入值或选择选项。

  6. 计算字段:在 Tableau 中,您可以创建计算字段来进行更复杂的数据处理和计算。计算字段使用 Tableau 的函数库,支持数学运算、逻辑判断、日期处理等。

  7. 交互式可视化:Tableau 支持在图表之间进行交互,例如,您可以通过点击一个图表中的数据点,高亮或筛选其他图表中的相关数据。

  8. 发布与共享:Tableau 可以将您的工作成果发布到 Tableau Server 或 Tableau Public,从而便于您共享数据可视化结果。

二、其他常用数据分析工具

1、Microsoft Excel简介

Microsoft Excel是一个强大且广泛使用的电子表格软件,适用于数据整理、分析和可视化。它的公式功能和数据透视表功能使数据分析更加方便快捷。

1.1、下载链接


Microsoft Excel下载链接

1.2、使用技巧

  1. 排序和筛选:在数据分析中,经常需要对数据进行排序和筛选。在Excel中,可以使用“排序”和“筛选”功能来完成这些操作。

  2. 数据透视表:数据透视表是Excel的一个重要功能,可以将数据按照不同的维度进行汇总和分析。通过数据透视表,可以轻松地生成各种汇总和交叉分析报表。

  3. 图表:Excel提供了各种图表类型,如柱形图、折线图、饼图、散点图等。通过图表,可以更直观地展现数据的变化趋势和分布情况。

  4. 条件格式:条件格式可以让数据在满足特定条件时自动进行格式化,比如颜色填充、加粗、下划线等。通过条件格式,可以快速地发现和标记数据中的异常值和趋势。

  5. 公式和函数:Excel提供了各种内置公式和函数,如求和、平均数、最大值、最小值等。可以通过这些公式和函数来计算和分析数据。

  6. 数据验证:数据验证可以限制数据输入的范围和格式,避免数据输入错误和不规范。比如可以设置只能输入数字、日期、邮件地址等。

2、Python简介

Python是一种高级编程语言,广泛应用于数据分析和机器学习领域。Python有许多流行的数据分析库,如pandas、numpy、matplotlib、scipy等。

2.1、下载链接


Python下载链接

2.2、常用库的安装方式和使用技巧

2.2.1、Pandas

安装方式:python命令行界面输入

pip install pandas

使用技巧:Pandas的核心数据结构是Series和DataFrame,它们可以用来表示一维和二维数据集合。Pandas提供了丰富的数据操作和转换功能,如数据切片、过滤、聚合、合并、排序等。Pandas还支持多种数据文件格式,如CSV、Excel、SQL、JSON、HTML等。

2.2.2、NumPy

安装方式:python命令行界面输入

pip install numpy

使用技巧:NumPy的核心数据结构是ndarray,它可以表示任意维度的数值数组。NumPy提供了各种数学函数和统计函数,如加、减、乘、除、矩阵运算、FFT、线性代数、随机数生成等。

2.2.3、Matplotlib

安装方式:python命令行界面输入

pip install matplotlib

使用技巧:Matplotlib可以用来绘制各种2D和3D图表,如折线图、散点图、柱状图、饼图、等高线图、热图、3D散点图等。Matplotlib还支持各种交互式和动态图表,如动画、实时更新、缩放、平移、标记等。

3、R语言简介

R是一种流行的统计分析软件,具有强大的数据分析和可视化能力。R的生态系统中有丰富的统计分析和可视化库,如ggplot2、dplyr、tidyr、reshape2等。

3.1、下载链接


R语言的官方链接

RStudio的下载链接(RStudio是R语言的一种常用集成开发环境,它可以更方便地进行R语言的编程和数据)

3.2、常用库的安装方式和使用技巧

3.2.1、ggplot2

安装方式:在R命令行中输入以下代码

install.packages("ggplot2")

使用技巧:ggplot2的核心函数是ggplot(),它可以设置数据和图形元素的映射和属性。其他常用函数包括aes()、geom_XXX()、facet_grid()等,它们可以用来设置图形的几何类型、分面、颜色、标签、主题等。可以通过在线文档和示例来学习ggplot2的更多用法。

3.2.2、dplyr

安装方式:在R命令行中输入以下代码

install.packages("dplyr")

使用技巧:dplyr是一个数据处理库,主要用于数据切片、过滤、聚合和合并等操作。它提供了一组简洁、一致的函数,如filter()、select()、mutate()、group_by()、summarize()、join()等。可以通过在线文档和示例来学习dplyr的更多用法。

3.2.3、tidyr

安装方式:在R命令行中输入以下代码

install.packages("tidyr")

使用技巧:tidyr是一个数据清洗库,主要用于数据整理和重塑。它提供了一组函数,如gather()、spread()、separate()、unite()等,可以用来对数据进行长宽变换、分列、合并等操作。可以通过在线文档和示例来学习tidyr的更多用法。

4、Power BI简介

Power BI是一种微软的商业智能工具,可以进行数据可视化、报表和仪表板的创建和共享。它支持多种数据源和数据整合方式,并提供了各种可视化工具和定制选项。

4.1、下载链接


Power BI的官方链接

4.2、使用技巧

Power BI可以连接各种数据源,并且支持使用R和Python等编程语言进行数据分析和可视化。以下是Power BI的基本使用方法,通过深入学习和实践,可以更好地掌握Power BI的数据分析和可视化能力。

  1. 数据源连接:Power BI支持各种数据源的连接,包括Excel、CSV、SQL Server、MySQL、Oracle等数据库,以及在线数据源和云服务。可以通过“获取数据”选项来连接数据源,然后进行数据清洗和转换操作。

  2. 数据转换和清洗:Power BI提供了Power Query和Power Pivot两种数据转换和清洗工具,可以对数据进行各种操作,如筛选、排序、聚合、合并、分列、替换、填充等。通过这些工具,可以将不同的数据源整合在一起,并将数据转换成合适的格式和结构。

  3. 数据建模和计算:在Power Pivot中,可以进行数据建模和计算操作,创建数据模型、计算字段、指标和关系。可以使用DAX语言来编写各种复杂的计算公式和表达式,如SUM、AVERAGE、MAX、MIN、IF、COUNT、FILTER等。

  4. 可视化和报表:Power BI提供了各种可视化工具和组件,可以根据需求创建各种图表、表格、矩阵、地图、仪表板等。可以使用图表设计器和格式化工具来进行定制和美化,添加标签、标题、注释等。可以创建交互式报表和仪表板,支持各种交互式和实时更新功能。

  5. 共享和发布:Power BI可以将报表和仪表板发布到云服务中,支持各种共享和协作功能。可以将报表嵌入到其他应用程序中,如SharePoint、Teams等,实现数据的更广泛传播和应用。

-----------------------------------------------------------------我是分割线--------------------------------------------------------------

看完了觉得不错就点个赞或者评论下吧,感谢!!!

如果本文哪里有误随时可以提出了,收到会尽快更正的

相关文章:

数据分析工具集合:Tableau入门及其他工具简介

目录 一、Tableau简介 1、下载链接 2、使用技巧 二、其他常用数据分析工具 1、Microsoft Excel简介 1.1、下载链接 1.2、使用技巧 2、Python简介 2.1、下载链接 2.2、常用库的安装方式和使用技巧 2.2.1、Pandas 2.2.2、NumPy 2.2.3、Matplotlib 3、R语言简介 3.…...

响应式布局的五种方法

响应式布局的五种方法1.百分比布局2.rem布局3. 媒体查询 media screen4. flex布局5.vw 和 vh响应式布局是同一页面在不同的屏幕上有不同的布局,即只需要一套代码使页面适应不同的屏幕。 1.百分比布局 1.有父元素就相对于父元素 2.没有父元素就相对于视口的大小 举一…...

Javase学习文档------数组

Java 数组是 Java 编程中非常基础和重要的一个知识点。 以下是 Java 数组的主要学习内容: 数组的几个特点 数组在声明时必须指定长度,且长度不可变:数组的长度在声明时就需要确定,一旦确定就不能修改。因此,在使用数组…...

百度高德地图JS-API学习手记:地图基本设置与省市区数据加载

无论是百度还是高德地图开发,还是高德地图开发。官方的给的案例启示很多,copy再修改下,就完成了 概述-地图 JS API | 高德地图API 地图 JS API | 百度地图API SDK 这个大致看一下,我想。有点GIS基础都能完成地图开发。 个人认…...

c语言—指针详解***内存地址***指针字节数***注意事项

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 给大家跳段街舞感谢支持&#xff01;ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ…...

VMware虚拟机之WindowsXP系统超详细下载安装与使用教程

文章目录前言一、WindowsXP虚拟机系统下载二、WindowsXP虚拟机系统安装三、WindowsXP虚拟机系统使用总结前言 本博客的主要内容为使用VMware虚拟机下载安装与使用WindowsXP系统&#xff0c;WindowsXP系统虽然早已过时&#xff0c;但是仍对我们的学习有着很大的帮助&#xff0c;…...

【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

积极心态,助力人生成功

无论生活中遇到多少困难和挫折&#xff0c;只要我们保持积极心态、努力拼搏&#xff0c;就有望最终实现自己的梦想和目标。...

ADRC线性跟踪微分器(ST+SCL语言)

ADRC自抗扰相关算法源代码和公式请参看下面文章链接: ADRC/Matlab一步步实现跟踪微分器TD(附完整PLC测试代码链接)_ladrc线性跟踪微分器差分方程_RXXW_Dor的博客-CSDN博客关于Adrc的理论分析不是本篇博客的重点,主要也是能力所限,相关理论大家可以看韩京清教授的论文,专栏…...

Linux C/C++ 崩溃诊断大师:解锁软件问题定位与修复的秘密武器

让崩溃成为历史&#xff1a;详解有效诊断与解决技巧引言崩溃信息的类型设置信号处理函数&#xff08;Setting up signal handlers&#xff09;信号来源和上下文信息使用 siginfo_t 结构体获取信号来源信息使用 ucontext 结构体获取上下文信息将崩溃信息写入日志标准的信号处理函…...

ChatGPT能代替Oracle DBA吗?用Oracle OCP(1z0-083)的真题测试一下。

让我们来看看ChatGPT不能通过Oracle OCP的考试&#xff1f; 文章目录引言测试过程总结和分析关于博主&#xff0c;姚远&#xff1a;Oracle ACE&#xff08;Oracle和MySQL数据库方向&#xff09;。Oracle MAA 大师。华为云MVP。《MySQL 8.0运维与优化》的作者。拥有 Oracle 10g和…...

《扬帆优配》二季度投资策略出炉 机构调仓换股露踪迹

随着多家上市公司公告发布&#xff0c;其发表的股东数据使得基金的最新持仓浮出水面。与此同时&#xff0c;组织也在密集调研中寻觅出资时机。站在二季度的起点&#xff0c;基金公司二季度出资策略渐次发表。多家基金公司以为&#xff0c;宏观经济将延续修正态势&#xff0c;仍…...

【SpringMVC】2—传统方式实现增删改查

⭐⭐⭐⭐⭐⭐ Github主页&#x1f449;https://github.com/A-BigTree 笔记链接&#x1f449;https://github.com/A-BigTree/Code_Learning ⭐⭐⭐⭐⭐⭐ 如果可以&#xff0c;麻烦各位看官顺手点个star~&#x1f60a; 如果文章对你有所帮助&#xff0c;可以点赞&#x1f44d;…...

图像阈值化

图像阈值化 图像阈值化简介 ⚫ 图像阈值化是图像处理的重要基础部分, 应用很广泛, 可以根据灰度差异来分割图像不同部分 ⚫ 阈值化处理的图像一般为单通道图像(灰度图) ⚫ 阈值化参数的设置可以使用滑动条来debug ⚫ 阈值化处理易光照影响, 处理时应注意 ⚫ 本节主要介绍…...

1.5 极限运算法则

思维导图&#xff1a; 我的理解&#xff1a; 如果一个数列{a_n}是一个无穷小&#xff0c;那么它的极限为0&#xff0c;即lim(n→∞)a_n0。同样地&#xff0c;如果另一个数列{b_n}也是一个无穷小&#xff0c;那么它的极限为0&#xff0c;即lim(n→∞)b_n0。 当我们考虑这两个无…...

首批因AI失业的人出现-某游戏公司裁掉半数原画师

如今各种AI爆火&#xff0c;不可避免的的会与某些功能撞车职业发生冲突&#xff0c;每一次生产力的变革&#xff0c;在带来技术进步与更高效率的同时&#xff0c;也都无可避免的会带来一波失业浪潮&#xff0c;当下的人工智能浪潮自然也不例外。 现在&#xff0c;第一批因为AI…...

字符串转换整数(atoi)

请你来实现一个 myAtoi(string s) 函数&#xff0c;使其能将字符串转换成一个 32 位有符号整数&#xff08;类似 C/C 中的 atoi 函数&#xff09;。 函数 myAtoi(string s) 的算法如下&#xff1a; 读入字符串并丢弃无用的前导空格 检查下一个字符&#xff08;假设还未到字符…...

Servlet练习

练习准备 编写Student和StudentDao package beans;public class Student{private String num;private String name;public Student(){}public String getNum() {return num;}public String getName() {return name;}public void setNum(String num) {this.num num;}public v…...

美国高速公路信号灯控制项目的大致逻辑和步骤 智慧公路设计

美国高速公路信号灯控制项目的大致逻辑和步骤&#xff1a; 美国那边先提供一个关于具体做什么需求、那边的设备&#xff08;信号灯&#xff09;有什么参数&#xff0c;什么接口&#xff0c;分别是什么属性等等的详细设计文档&#xff0c;开发人员拿到这个文档以后把它看懂&…...

数字电源专用IC,国产C2000, QX320F280049

一、特性参数 1、独立双核&#xff0c;32位CPU&#xff0c;单核主频400MHz 2、IEEE 754 单精度浮点单元 &#xff08;FPU&#xff09; 3、三角函数单元 &#xff08;TMU&#xff09; 4、1MB 的 FLASH &#xff08;ECC保护&#xff09; 5、1MB 的 SRAM &#xff08;ECC保护&…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...