当前位置: 首页 > news >正文

【taichi】利用 taichi 编写深度学习算子 —— 以提取右上三角阵为例

本文以取 (bs, n, n) 张量的右上三角阵并展平为向量 (bs, n*(n+1)//2)) 为例,展示如何用 taichi 编写深度学习算子。

在这里插入图片描述
如图,要把形状为 (bs,n,n)(bs,n,n)(bs,n,n) 的张量,转化为 (bs,n(n+1)2)(bs,\frac{n(n+1)}{2})(bs,2n(n+1)) 的向量。我们先写一个最简单的最慢的纯 python 循环实现方法

纯 python for 循环

def get_tensor_up_right_tri_slow(t):# t shape (bs, n, n)# out shape (bs, n*(n+1)//2)out = torch.zeros(t.shape[0], t.shape[1]*(t.shape[1]+1)//2)n = t.shape[1]# k = i*n + j - i*(i+1)//2for b in range(t.shape[0]):# 遍历右上三角阵,包括主对角线for i in range(t.shape[1]):for j in range(i, t.shape[1]):k = i*n + j - i*(i+1)//2out[b, k] = t[b, i, j]return out

可想而知,三层 python for 循环,必然是极慢的了。

转化为 taichi

在此基础上,稍微做一些修改,就可以得到我们的 taichi 版本函数

import taichi as titi.init(arch=ti.gpu)@ti.kernel
def get_tensor_up_right_tri(t: ti.types.ndarray(ndim=3, dtype=ti.f32), out: ti.types.ndarray(ndim=2, dtype=ti.f32)):# t shape (bs, n, n)# out shape (bs, n*(n+1)//2)n = t.shape[1]for b, i, j in t:# 遍历右上三角阵,包括主对角线if i <= j:k = i*n + j - i*(i+1)//2out[b, k] = t[b, i, j]

taichi 支持同时遍历多层循环,将三层循环改为一层循环后,和 python for 循环版本基本没有什么差别。taichi 将此函数转化为 CUDA 版本进行加速,从而提高运算速度。

相关文章:

【taichi】利用 taichi 编写深度学习算子 —— 以提取右上三角阵为例

本文以取 (bs, n, n) 张量的右上三角阵并展平为向量 (bs, n*(n1)//2)) 为例&#xff0c;展示如何用 taichi 编写深度学习算子。 如图&#xff0c;要把形状为 (bs,n,n)(bs,n,n)(bs,n,n) 的张量&#xff0c;转化为 (bs,n(n1)2)(bs,\frac{n(n1)}{2})(bs,2n(n1)​) 的向量。我们先写…...

二进制 k8s 集群下线 worker 组件流程分析和实践

文章目录[toc]事出因果个人思路准备实践当前 worker 节点信息将节点标记为不可调度驱逐节点 pod将 worker 节点从 k8s 集群踢出下线 worker 节点相关组件事出因果 因为之前写了一篇 二进制 k8s 集群下线 master 组件流程分析和实践&#xff0c;所以索性再写一个 worker 节点的缩…...

Bean的六种作用域

限定程序中变量的可用范围叫做作用域&#xff0c;Bean对象的作用域是指Bean对象在Spring整个框架中的某种行为模式~~ Bean对象的六种作用域&#xff1a; singleton&#xff1a;单例作用域&#xff08;默认&#xff09; prototype&#xff1a;原型作用域&#xff08;多例作用域…...

Http发展历史

1 缘起 有一次&#xff0c;听到有人在议论招聘面试的人员&#xff0c; 谈及应聘人员的知识深度&#xff0c;说&#xff1a;问了一些关于Http的问题&#xff0c;如Http相关结构、网络结构等&#xff0c; 然后又说&#xff0c;问没问相关原理、来源&#xff1f; 我也是有些困惑了…...

高级Java程序员必备的技术点,你会了吗?

很多程序员在入行之后的前一两年&#xff0c;快速学习到了做项目常用的各种技术之后&#xff0c;便进入了技术很难寸进的平台期。反正手里掌握的一些技术对于应付普通项目来说&#xff0c;足够用了。因此也会缺入停滞&#xff0c;最终随着年龄的增长&#xff0c;竞争力不断下降…...

【暴力量化】查找最优均线

搜索逻辑 代码主要以支撑概率和压力概率来判断均线的优劣 判断为压力&#xff1a; 当日线与测试均线发生金叉或即将发生金叉后继续下行 判断为支撑&#xff1a; 当日线与测试均线发生死叉或即将发生死叉后继续上行 判断结果的天数&#xff1a; 小于6日均线&#xff0c;用金叉或…...

Java读取mysql导入的文件时中文字段出现�??的乱码如何解决

今天在写程序时遇到了一个乱码问题&#xff0c;困扰了好久&#xff0c;事情是这样的&#xff0c; 在Mapper层编写了查询语句&#xff0c;然后服务处调用&#xff0c;结果控制器返回一堆乱码 然后查看数据源头处&#xff1a; 由重新更改解码的字符集&#xff0c;在数据库中是正…...

k8s核心概念—Pod Controller Service介绍——20230213

文章目录一、Pod1. pod概述2. pod存在意义3. Pod实现机制4. pod镜像拉取策略5. pod资源限制6. pod重启机制7. pod健康检查8. 创建pod流程9. pod调度二、Controller1. 什么是Controller2. Pod和Controller关系3. deployment应用场景4. 使用deployment部署应用&#xff08;yaml&a…...

Tensorflow的数学基础

Tensorflow的数学基础 在构建一个基本的TensorFlow程序之前&#xff0c;关键是要掌握TensorFlow所需的数学思想。任何机器学习算法的核心都被认为是数学。某种机器学习算法的策略或解决方案是借助于关键的数学原理建立的。让我们深入了解一下TensorFlow的数学基础。 Scalar 标…...

IT培训就是“包就业”吗?内行人这么看

大部分人毕业后选择参加职业技能培训&#xff0c;都是为了学完之后能找到好工作&#xff0c;而“就业服务”也成为各家培训机构对外宣传的重点内容。那么&#xff0c;所谓的“就业服务”就是“包就业”和“包底薪”吗&#xff1f;学完就一定能拿到offer吗&#xff1f;今天&…...

【算法】【数组与矩阵模块】顺时针旋转打印矩阵

目录前言问题介绍解决方案代码编写java语言版本c语言版本c语言版本思考感悟写在最后前言 当前所有算法都使用测试用例运行过&#xff0c;但是不保证100%的测试用例&#xff0c;如果存在问题务必联系批评指正~ 在此感谢左大神让我对算法有了新的感悟认识&#xff01; 问题介绍 …...

Java中的锁概述

java中的锁java添加锁的两种方式&#xff1a;synchronized&#xff1a;关键字 修饰代码块&#xff0c;方法 自动获取锁、自动释放锁Reentrantlock&#xff1a;类 只能修饰代码块 手动加锁、释放锁java中锁的名词一些锁的名词指的是锁的特性&#xff0c;设计&#xff0c;状态&am…...

微电影行业痛点解决方案

在当下新媒体时代&#xff0c;微电影作为“微文化”的载体&#xff0c;具有“微”的特点&#xff0c;经过短短数年的快速发展&#xff0c;并获得了受众广泛的关注和喜爱&#xff0c;对人们的休闲娱乐方式也产生较大的影响。但在迅猛发展的同时也存在一些行业痛点&#xff0c;诸…...

使用Spring框架的好处是什么

使用Spring框架的好处是什么&#xff1f; 1、轻量&#xff1a;Spring 是轻量的&#xff0c;基本的版本大约2MB。 2、控制反转&#xff1a;Spring通过控制反转实现了松散耦合&#xff0c;对象们给出它们的依赖&#xff0c;而不是创建或查找依赖的对象们。 3、面向切面的编程(AOP…...

【表格单元格可编辑】vue-elementul简单实现table表格点击单元格可编辑,点击单元格变成弹框修改数据

前言 这是继我另一个帖子就是单元格点击变成输入框后添加的功能 因为考虑到有些时候修改单元格的信息可能点击后要修改很多&#xff0c;那一个输入框不好用 所以这时候就需要一个弹框可以把所有表单都显示出来修改 所以这里就专门又写了一个demo&#xff0c;用于处理这种情况 …...

vue3.0 响应式数据

目录1.什么是响应式2. 选项式 API 的响应式数据3.组合式 API 的响应式数据3.1 reactive() 函数3.2 toref() 函数3.3 toRefs() 函数3.4ref() 函数总结1.什么是响应式 这个术语在今天的各种编程讨论中经常出现&#xff0c;但人们说它的时候究竟是想表达什么意思呢&#xff1f;本质…...

uni-app ①

文章目录一、uni-app简介学习 uniapp 本质uniapp 优势uni-app 和 vue 的关系uni-app 和小程序有什么关系uniapp 与 web 代码编写区别课程内容学习重点知识点一、uni-app 简介 uni-app 是一个使用 Vue.js 进行 开发所有前端应用的框架。开发者编写一套代码&#xff0c;即可发布…...

20个 Git 命令玩转版本控制

想要在团队中处理代码时有效协作并跟踪更改&#xff0c;版本控制发挥着至关重要的作用。Git 是一个版本控制系统&#xff0c;可以帮助开发人员跟踪修订、识别文件版本&#xff0c;并在必要的时候恢复旧版本。Git 对于有一定编程经验的用户来说虽然不算太难&#xff0c;但是想要…...

SAP NetWeaver版本和SAP Kernel版本的确定

SAP NetWeaver&#xff08;SAP NW&#xff09;描述了用于“业务启用”的所有软件和服务。SAP业务套件&#xff08;如ERP中央组件&#xff08;ECC&#xff09;或供应商关系管理&#xff08;SRM&#xff09;&#xff09;包含该特定业务解决方案的软件组件。 以下是SAP NetWeaver…...

面试23K字节测试开发岗被血虐,到底具有怎样的技术才算高级水平?

前几天我朋友跟我吐苦水&#xff0c;这波面试又把他打击到了&#xff0c;做了6年软件测试。。。 下面这条招聘是在腾讯招聘官网截图下来的&#xff0c;首先我们对高级水平下一个定义吧&#xff0c;那它应该是对标这个职级该有的能力 什么样的工程师才能算高级&#xff1f;至少…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...