模型解释性:SHAP包的使用
本篇博客介绍另一种事后可解释性方法:SHAP(SHapley Additive exPlanation)方法。
1. Shapley值理论
Shapley值是博弈论中的一个概念,通过衡量联盟中各成员对联盟总目标的贡献程度,从而根据贡献程度来进行联盟成员的利益分配,避免了分配的平均主义。
当Shapley理论用于解释机器学习模型的时候,将输入特征xxx视为参与成员,模型输出的概率分布f(x)f(x)f(x)视为联盟总目标,通过衡量各特征的贡献度来挖掘重要特征,从而提供可解释性判断依据。其数学模型如下:g(Z′)=φ0+∑j=1MφjZj′≈f(x)(1)g(Z^{'})=\varphi_{0}+\sum_{j=1}^{M}\varphi_{j}Z^{'}_{j}\approx f(x) \tag{1}g(Z′)=φ0+j=1∑MφjZj′≈f(x)(1)其中,ggg是解释模型,f(x)f(x)f(x)是原机器学习模型,Zj′={0,1}MZ^{'}_{j}=\{0,1\}^{M}Zj′={0,1}M表示相应特征是否被观察到,MMM是输入特征的数目,φi\varphi_{i}φi是每个特征的归因值,φ0\varphi_{0}φ0是解释模型的常数。
对于一个特定的输入数据x0x_{0}x0,其Shapley值的计算公式如下:φi(f,x0)=∑S⊆NS/{i}∣S∣!(M−∣S∣−1)!∣NS∣\varphi_{i}(f,x_{0})=\sum_{S\subseteq N_{S}/ \{i\}}\frac{|S|!(M-|S|-1)!}{|N_{S}|!}[f(S\cup\{i\})-f(S)]\tag{2}φi(f,x0)=S⊆NS/{i}∑∣NS∣!∣S∣!(M−∣S∣−1)其中,φi(f)\varphi_{i}(f)φi(f)代表函数fff中特征iii的贡献度,NSN_{S}NS是所有特征组成的集合,SSS代表特征子集,NS/{i}N_{S}/\{i\}NS/{i}代表在集合NSN_{S}NS中去除特征iii,S∪{i}S\cup \{i\}S∪{i}表示子集SSS中增加特征iii,∣S∣|S|∣S∣表示集合SSS中元素的个数。
为了方面公式(2)的计算,通常将公式(2)转化为如下公式计算:φi(f,x0)=∑z′∈{0,1}M∣z′∣!(M−∣z′∣−1)!M\varphi_{i}(f,x_{0})=\sum_{z^{'}\in\{0,1\}^{M}}\frac{|z^{'}|!(M-|z^{'}|-1)!}{M!}[f_{S}(z^{'})-f_{S}(z^{'}|i)]\tag{3}φi(f,x0)=z′∈{0,1}M∑M!∣z′∣!(M−∣z′∣−1)其中,fS=E[f(x)∣zS′]=1N∑j=1Nf(xj′)f_{S}=E[f(x)|z_{S}^{'}]=\frac{1}{N}\sum_{j=1}^{N}f(x_{j}^{'})fS=E[f(x)∣zS′]=N1j=1∑Nf(xj′)其中,zS′z_{S}^{'}zS′为集合SSS中特征的取值所组成的集合,NNN为原函数fff训练数据的个数,xj′x_{j}^{'}xj′的取值如下:xj′={x0i,Fi∈zS′xji,Fi∉zS′x_{j}^{'}=\left\{\begin{aligned} x_{0i},& F_{i}\in z_{S}^{'} \\ x_{ji},&F_{i}\notin z_{S}^{'} \end{aligned}\right. xj′={x0i,xji,Fi∈zS′Fi∈/zS′其中,x0ix_{0i}x0i为待解释数据x0x_{0}x0的第iii个特征值,xjix_{ji}xji表示第jjj个训练数据中第iii个特征的取值,FiF_{i}Fi表示第iii个特征值。
SHAP值具备扎实的理论基础,但φi\varphi_{i}φi的计算复杂度和E[f(x)∣zS′]E[f(x)|z_{S}^{'}]E[f(x)∣zS′]的有效估计是其在实际应用中的最大阻碍,为了解决这个问题,Lundberg等人提出了Tree SHAP方法。
Tree SHAP是用于树模型的快速SHAP值估计方法,大大增加了SHAP值的实际应用能力。
2 SHAP包用法
这里仍然以Boston房价为例,使用XGBoost方法训练模型。其用法举例如下:
模型训练
import pandas as pd
import numpy as np
from sklearn.datasets import load_boston
from xgboost import XGBRegressor
from sklearn.model_selection import train_test_split
import shap
shap.initjs()
#分类
boston=load_boston()
X=boston.data
y=boston.target
features=boston.feature_names
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)xgbr=XGBRegressor(n_estimators=200,max_depth=4)
xgbr.fit(X_train,y_train)
对单个样本进行解释
explainer=shap.TreeExplainer(xgbr)
shap_values=explainer.shap_values(X_test[1].reshape(1,-1))
shap.force_plot(explainer.expected_value,shap_values,X_test[1].reshape(1,-1),feature_names=features)
其结果如下:

关于上图,有以下几个方面需要说明:
- base_value:全体样本Shape平均值,这里的全体样本指的是模型的训练样本;
- output_value: 当前样本的Shap输出值,即为模型的预测值;
- 正向作用特征:红色特征即为正向作用的特征;
- 反向作用特征:蓝色特征即为反向作用的特征;
整个测试集的Shap分布
explainer=shap.TreeExplainer(xgbr)
shap_values=explainer.shap_values(X_test)
shap.force_plot(explainer.expected_value,shap_values,X_test,feature_names=features)
其结果如下(可以通过调节横纵坐标观察当个特征的效果):

从特征角度观察样本Shap值
shap.summary_plot(shap_values,X_test,feature_names=features)
其结果如下:

参考文献
- 《基于图模型机器学习算法的可解释性技术研究与实现》
- 《稳定评估机器学习模型可解释性研究》
- https://blog.csdn.net/tMb8Z9Vdm66wH68VX1/article/details/106131890
相关文章:
模型解释性:SHAP包的使用
本篇博客介绍另一种事后可解释性方法:SHAP(SHapley Additive exPlanation)方法。 1. Shapley值理论 Shapley值是博弈论中的一个概念,通过衡量联盟中各成员对联盟总目标的贡献程度,从而根据贡献程度来进行联盟成员的利益分配,避免…...
算法训练营 day45 动态规划 0-1背包理论 分割等和子集
算法训练营 day45 动态规划 0-1背包理论 分割等和子集 0-1背包理论 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 在下面的讲解中&…...
SSM框架
1.mybatis的底层原理 本质上就是使用反射和动态代理来实现对应的映射关系 2.日志级别 3.传递参数 单个参数的传递和多个参数的传递 Emp selectOne(Param(“xingming”) String name); List selectByCondition(Param(“name”) String name,Param(“sal”) double sal); 4.#和…...
教育行业需要什么样的客服系统?
某教育公司拥有素质教育、成人教育、智慧教育等多个业务板块,日常通过电商、线上媒体、线上线下授课等方式进行业务开展和品牌宣传,取得了非常不错的成绩,受到了很多人的好评反馈。 对于这样一个教育公司,客户来源广泛࿰…...
花房集团任命新首席财务官:已跌破IPO发行价,活跃用户下滑
上市刚满2个月,花椒母公司花房集团(HK:03611)的高管就发生了变更。2023年2月12日,花房集团披露的公告显示,董事会宣布赵磊为该公司首席财务官(CFO),自2023年2月10日起生效。 据贝多…...
儿童绘本馆图书借阅租赁知识付费小程序源码交流
1.分类图书 2.书单推荐 4.会员卡次、期限购买 5.借阅时间选择 6.积分签到 7.优惠Q领取 前端uniapp开发 后端thinkphp开发 完全开源 <template> <view class"sp-section sp-index"> <!-- search --> <view class&qu…...
Vue3 中 axios 的安装及使用
目录前言:一、什么是 axios ?二、Axios 的配置项三、Axios 的请求方式四、自定义创建实例五、Axios 请求错误处理六、Axios 解决跨域问题七、Axios 请求案例随机笑话大全总结:前言: 在编写vue里的项目时,必须要用和后台…...
Django设计模式以及模板层介绍
MVC和MTV 传统的MVC作用:降低模块间的耦合度(解耦)Django的MTV模式 作用:降低模块间的耦合度(解耦)什么是模板 1、模板是可以根据字典数据动态变化的html网页2、模板可以根据视图中传递的字典数据动态生成相…...
Linux信号一门搞定
1.信号是什么? 信号其实就是一个软件中断。 例: 输入命令,在Shell下启动一个前台进程。用户按下Ctrl-C,键盘输入产生一个硬件中断。如果CPU当前正在执行这个进程的代码,则该进程的用户空间代码暂停执行,…...
手撸一个动态Feign,实现一个“万能”接口调用
Feign,在微服务框架中,是的服务直接的调用变得很简洁、简单,而不需要再编写Java Http调用其他微服务的接口。 动态feign 对于fegin调用,我们一般的用法:为每个微服务都创建对应的feignclient接口,然后为每…...
Linux Capabilities 入门
目录 Linux capabilities 是什么? capabilities 的赋予和继承 线程的 capabilities Permitted Effective Inheritable Bounding Ambient 文件的 capabilities Permitted Inheritable Effective 运行 execve() 后 capabilities 的变化 案例 Linux capab…...
驱动 day6
关于设备树的理解: 设备树(Device Tree)是一种用于特定硬件设备的解释语法树。它用来表示存储有关主板硬件和CPU架构信息的数据在内核中的传递格式,使内核可以更好地了解硬件并支持它们,而不必编写固定的代码。设备节点…...
附录2-tensorflow目标检测
源码来自作者Bubbliiiing,我对参考链接的代码略有修改,网盘地址 链接:百度网盘 请输入提取码 提取码:dvb1 目录 1 参考链接 2 环境 3 数据集准备 3.1 VOCdevkit/VOC2007 3.2 model_data/voc_classes.txt 3.3 voc_an…...
常见的EMC问题
电磁兼容设计的目的就在于满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,并且使产品不会对系统中的其它设备产生电磁干扰。 电磁兼容设计中常见的问题有哪些? 1、电磁兼容设计可以从电路设计(包括器件选择&…...
Redis内存存储效率问题
目录 内存碎片是如何形成的? 如何判断是否有内存碎片? 如何清理内存碎片? INFO命令 面向 Prometheus 的 Redis-exporter 监控 实习期间,了解到,企业级开发中多个项目使用Redis,运行Redis实例的有可能是…...
3.28 haas506 2.0开发教程-example-蓝牙多设备扫描(仅支持M320,HD1)
haas506 2.0开发教程-example-蓝牙多设备扫描案例说明蓝牙信息克隆1.手机蓝牙改名信息克隆代码测试案例说明 开发板扫描蓝牙设备,获取并打印蓝牙设备mac地址。mac地址每个设备不同,且不能更改。本案例仅适用于M320开发板和HD1-RTU。案例使用手机与iBeac…...
C语言经典编程题100例(41~60)
目录41、习题4-4 特殊a串数列求和42、习题4-6 水仙花数43、习题4-7 最大公约数和最小公倍数44、习题7-5 找鞍点45、练习5-1 求m到n之和46、练习5-2 找两个数中最大者47、练习5-3 数字金字塔48、习题5-1 符号函数49、习题5-2 使用函数求奇数和50、习题5-3 使用函数计算两点间的距…...
git日常使用命令
实习这段时间使用了很多git指令来提交代码,简单记录一下日常使用的指令: 提交代码通常顺序: 1.git status 查看本地修改项 2.git add . 提交全部文件 (这个 .是全部文件)到暂存区 3.git commit -m ‘本次提交的说明’…...
ES6对象展开运算符浅拷贝or深拷贝
ES6中提出的对象展开运算符“…”就是用来展开元素的。有了它就不用代码循环遍历了,偷懒专用。 1. 合并数组 展开原有数组中的所有元素,可以合并成一个新的数组。 var a[1,2,3]; var b[4,5,6]; var c[...a,...b]; console.log(c) // 输出:…...
leaflet 上传包含shp的zip文件,在map上解析显示图形(059)
第059个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet中本地上传包含shp的zip文件,利用shapefile读取shp数据,并在地图上显示图形。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果 文章目录 示例效果加载shapefile.js方式安装引用jszip(…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
python可视化:俄乌战争时间线关键节点与深层原因
俄乌战争时间线可视化分析:关键节点与深层原因 俄乌战争是21世纪欧洲最具影响力的地缘政治冲突之一,自2022年2月爆发以来已持续超过3年。 本文将通过Python可视化工具,系统分析这场战争的时间线、关键节点及其背后的深层原因,全面…...
二维数组 行列混淆区分 js
二维数组定义 行 row:是“横着的一整行” 列 column:是“竖着的一整列” 在 JavaScript 里访问二维数组 grid[i][j] 表示 第i行第j列的元素 let grid [[1, 2, 3], // 第0行[4, 5, 6], // 第1行[7, 8, 9] // 第2行 ];// grid[i][j] 表示 第i行第j列的…...
轻量安全的密码管理工具Vaultwarden
一、Vaultwarden概述 Vaultwarden主要作用是提供一个自托管的密码管理器服务。它是Bitwarden密码管理器的第三方轻量版,由国外开发者在Bitwarden的基础上,采用Rust语言重写而成。 (一)Vaultwarden镜像的作用及特点 轻量级与高性…...
