当前位置: 首页 > news >正文

密度聚类算法(DBSCAN)实验案例

密度聚类算法(DBSCAN)实验案例

描述

DBSCAN是一种强大的基于密度的聚类算法,从直观效果上看,DBSCAN算法可以找到样本点的全部密集区域,并把这些密集区域当做一个一个的聚类簇。DBSCAN的一个巨大优势是可以对任意形状的数据集进行聚类。

本任务的主要内容:

1、 环形数据集聚类

2、 新月形数据集聚类

3、 轮廓系数评估指标应用

源码下载

环境

  • 操作系统:Windows 10、Ubuntu18.04

  • 工具软件:Anaconda3 2019、Python3.7

  • 硬件环境:无特殊要求

  • 依赖库列表

    matplotlib   	3.3.4
    numpy 			1.19.5
    scikit-learn	0.24.2
    

分析

本实验包含三个任务:环形数据集聚类、新月数据集聚类以及轮廓系数评估指标的使用,数据集均由sklearn.datasets模块生成。为了直观观察DBSCAN的优势,任务中还引入了前面学过的多种聚类算法进行对比。

本实验涉及以下几个环节:

1)子任务一、环形数据聚类

1.1 数据集的生成

1.2 使用K-Means、MeanShift、Birch算法进行聚类并可视化

1.3 使用DBSCAN聚类并可视化

2)子任务二、新月数据集聚类

2.1 数据集的生成

2.2 使用K-Means、MeanShift、Birch算法进行聚类并可视化

2.3 使用DBSCAN聚类并可视化

3)聚类评估指标(轮廓系数)案例实践

3.1 数据集生成

3.2 聚类并评估效果

实施

1、环形数据集聚类

任务描述:

1、使用scikit-learn生成环形数据集;

2、将数据集聚成右侧3个类别。

请添加图片描述
请添加图片描述

1.1 生成环形数据集

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets# 生成环形数据集(500个样本)
X1, y1=datasets.make_circles(n_samples=500, factor=0.5, noise=0.07, random_state=0)# 生成点块数据集(80个样本)
X2, y2 = datasets.make_blobs(n_samples=80, n_features=2, centers=[[1.2, 1.2]], cluster_std=[[0.15]], random_state=0)# 合并成一个数据集,生成散点图
X = np.concatenate((X1, X2))
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()

显示结果:

请添加图片描述

1.2 分别使用K-Means、MeanShift、Birch算法进行聚类

from sklearn.cluster import KMeans, MeanShift, Birch# 尝试三种聚类模型,都不能达到目的
y_pred = KMeans(3).fit_predict(X) # KMeans# y_pred = Birch(n_clusters=3).fit_predict(X) # Birch
# y_pred = MeanShift().fit_predict(X) # MeanShift
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

显示结果:

请添加图片描述

从算法的输出中可以看到,对于环形数据集,上述三种聚类算法均不能很好地实现任务规定的聚类目标。

1.3 使用DBSCAN算法(不指定参数)

from sklearn.cluster import DBSCAN# 使用无参数的DBSCAN聚类,发现模型将所有样本归为了一类
y_pred = DBSCAN().fit_predict(X)# 画散点图
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

显示结果:

请添加图片描述

可以看到,不使用参数的DBSCAN算法,将所有数据分成了一类。

1.4 指定DBSCAN算法的参数

DBSCAN算法聚类的结果依赖于调参,该算法的两个主要参数eps和min_samples,对于聚类结果的影响很大。

# eps-临近半径
# min_samples-最小样本数
# 指定参数,调参,任务完成(聚成内、中、外3类)
y_pred = DBSCAN(eps=0.2, min_samples=2).fit_predict(X)# 画散点图
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

输出结果:
请添加图片描述

可以看到,通过调参,DBSCAN算法完美地将数据集按指定要求聚成了3类。

2、新月数据集聚类

任务描述:

1、使用scikit-learn生成新月数据集;

2、将数据集聚成右侧上下2个类别。
请添加图片描述
请添加图片描述

2.1 生成数据集

import matplotlib.pyplot as plt
from sklearn import datasets# 生成弯月数据集(500个样本)
X, y = datasets.make_moons(500, noise = 0.1, random_state=99)# 显示散点图
plt.scatter(X[:, 0], X[:, 1], s = 100, alpha = 0.6, cmap = 'rainbow')plt.show()

显示结果:

请添加图片描述

2.2 尝试K-Means、MeanShift、Birch算法

from sklearn.cluster import KMeans, MeanShift, Birch# 尝试三种聚类模型,都不能达到目的
y_pred = KMeans(2).fit_predict(X) # KMeans# y_pred = Birch(n_clusters=2).fit_predict(X) # Birch
# y_pred = MeanShift().fit_predict(X) # MeanShift
plt.scatter(X[:, 0], X[:, 1], c=y_pred, s = 100, alpha = 0.6, cmap = 'rainbow')plt.show()

显示结果:(对于该数据集,上述三种聚类算法不能很好地实现指定聚类目标。)

请添加图片描述

2.3 使用DBSCAN聚类算法,不指定参数

from sklearn.cluster import DBSCAN# 使用DBSCAN算法(不指定参数)
y_pred = DBSCAN().fit_predict(X)# 画散点图
plt.scatter(X[:, 0], X[:, 1], c=y_pred, s = 100, alpha = 0.6, cmap = 'rainbow')plt.show()

显示结果:

请添加图片描述

2.4 使用DBSCAN聚类算法,指定参数

# 指定参数,调参,任务完成(聚成上下2类)
y_pred = DBSCAN(eps=0.2, min_samples=9).fit_predict(X)# 画散点图
plt.scatter(X[:, 0], X[:, 1], c=y_pred, s = 100, alpha = 0.6, cmap = 'rainbow')plt.show()

显示结果:

请添加图片描述

通过调整两个指定参数,DBSCAN算法按照要求完成了新月数据集的聚类,DBSCAN算法的一大优势是可以对任意形状的数据集进行聚类。

3、使用轮廓系数(silhouette_score)来评估聚类

任务描述:

轮廓系数(silhouette_score)指标是聚类效果的评价方式之一(前面我们还使用了兰德指数-adjusted_rand_score,注意它们之间的区别)。轮廓系数指标不关注样本的实际类别,而是通过分析聚类结果中样本的内聚度和分离度两种因素来给出成绩,取值范围为(-1,1),值越大代表聚类的结果越合理。

3.1 生成数据集

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs# 使用数据生成器随机生成500个样本,每个样本2个特征
X, y = make_blobs(n_samples=500, n_features=2, centers=[[-1,-1], [0.5,-1]], cluster_std=[0.2, 0.3], random_state=6)# 画出散点图
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()

显示结果:

请添加图片描述

3.2 使用轮廓系数来评估聚类结果

from sklearn.metrics import silhouette_score # 轮廓系数评估函数
from sklearn.cluster import MeanShift# 使用MeanShift聚类
y_pred = MeanShift().fit_predict(X)# 画出聚类散点图
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show() # 评估轮廓系数
score = silhouette_score(X, y_pred)
print('score: ', score)

请添加图片描述

相关文章:

密度聚类算法(DBSCAN)实验案例

密度聚类算法(DBSCAN)实验案例 描述 DBSCAN是一种强大的基于密度的聚类算法,从直观效果上看,DBSCAN算法可以找到样本点的全部密集区域,并把这些密集区域当做一个一个的聚类簇。DBSCAN的一个巨大优势是可以对任意形状…...

第07章_面向对象编程(进阶)

第07章_面向对象编程(进阶) 讲师:尚硅谷-宋红康(江湖人称:康师傅) 官网:http://www.atguigu.com 本章专题与脉络 1. 关键字:this 1.1 this是什么? 在Java中,this关键字不算难理解…...

异常的讲解(2)

目录 throws异常处理 基本介绍 throws异常处理注意事项和使用细节 自定义异常 基本概念 自定义异常的步骤 throw 和throws的区别 本章作业 第一题 第二题 第三题 第四题 throws异常处理 基本介绍 1)如果一个方法(中的语句执行时)可能生成某种异常,但是…...

jvm内存结构

1. 栈 程序计数器 2. 虚拟机栈 3. 本地方法栈 4. 堆 5. 方法区 1.2栈内存溢出 栈帧过多导致栈内存溢出 /*** 演示栈内存溢出 java.lang.StackOverflowError* -Xss256k*/ public class Demo1_2 {private static int count;public static void main(String[] args) {try {meth…...

要刹车?生成式AI迎新规、行业连发ChatGPT“警报”、多国考虑严监管

4月13日消息,据中国移动通信联合会元宇宙产业工作委员会网站,中国移动通信联合会元宇宙产业工作委员会、中国通信工业协会区块链专业委员会等,共同发布“关于元宇宙生成式人工智能(类 ChatGPT)应用的行业提示”。提示内…...

轻松掌握Qt FTP 机制:实现高效文件传输

轻松掌握Qt FTP:实现高效文件传输一、简介(Introduction)1.1 文件传输协议(FTP)Qt及其网络模块(Qt and its Network Module)QNetwork:二、QNetworkAccessManager上传实例(Qt FTP Upl…...

用AI帮我写一篇关于FPGA的文章,并推荐最热门的FPGA开源项目

FPGA定义 FPGA(Field Programmable Gate Array)是一种可编程逻辑器件,可以在硬件电路中实现各种不同的逻辑功能。与ASIC(Application Specific Integrated Circuit,特定应用集成电路)相比,FPGA…...

从兴趣或问题出发

当我们还沉寂在移动互联网给生活带来众多便利中,以 ChartGPT 为代表的 AI 时代已彻底到来。科技的发展,时刻在改变着我们的生活,我们需要不断地学习新知识和掌握新技能才能享受变化带来的便利,以及自身不被社会淘汰。 因此&#…...

C++ | 探究拷贝对象时的一些编译器优化

👑作者主页:烽起黎明 🏠学习社区:烈火神盾 🔗专栏链接:C 文章目录前言一、传值传参二、传引用传参三、传值返回拷贝构造和赋值重载的辨析四、传引用返回【❌】五、传匿名对象返回六、总计与提炼前言 在传参…...

linux工具gcc/g++/gdb/git的使用

目录 gcc/g 基本概念 指令集 函数库 (重要) gdb使用 基本概念 指令集 项目自动化构建工具make/makefile 进度条小程序 ​编辑 git三板斧 创建仓库 git add git commit git push git status git log gcc/g 基本概念 gcc/g称为编译器…...

Direct3D 12——纹理——纹理

纹理不同于缓冲区资源,因为缓冲区资源仅存储数据数组,而纹理却可以具有多个mipmap层级(后 文有介绍),GPU会基于这个层级进行相应的特殊操作,例如运用过滤器以及多重采样。支持这些特殊 的操作纹理资源都被限定为一些特定的数据格式…...

产品经理必读 | 俞军产品经理十二条军规

最近在学习《俞军产品方法论》,觉得俞军总结的十二条产品经理原则非常受用,分享给大家。 01. 产品经理首先是产品的深度用户 自己设计的产品都没使用过的产品经理,如何明白用户使用的问题,如何解决问题,所以产品经理肯…...

【机器视觉1】光源介绍与选择

文章目录一、常见照明光源类型二、照明光源对比三、照明技术3.1 亮视野与暗视野3.2 低角度照明3.3 前向光直射照明3.4 前向光漫射照明3.5 背光照明-测量系统的最佳选择3.6 颜色与补色示例3.7 偏光技术应用四、镜头4.1 镜头的几个概念4.2 影响图像质量的关键因素4.3 成像尺寸4.4…...

【三十天精通Vue 3】第十一天 Vue 3 过渡和动画详解

✅创作者:陈书予 🎉个人主页:陈书予的个人主页 🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区 🌟专栏地址: 三十天精通 Vue 3 文章目录引言一、Vue 3 过度和动画概述1.1过度和动画的简介二、Vue 3 过度2…...

基于多种流量检测引擎识别pcap数据包中的威胁

在很多的场景下,会需要根据数据包判断数据包中存在的威胁。针对已有的数据包,如何判断数据包是何种攻击呢? 方法一可以根据经验,对于常见的WEB类型的攻击,比如SQL注入,命令执行等攻击,是比较容…...

第02章_变量与运算符

第02章_变量与运算符 讲师:尚硅谷-宋红康(江湖人称:康师傅) 官网:http://www.atguigu.com 本章专题与脉络 1. 关键字(keyword) 定义:被Java语言赋予了特殊含义,用做专门…...

仅三行就能学会数据分析——Sweetviz详解

文章目录前言一、准备二、sweetviz 基本用法1.引入库2.读入数据3.调整报告布局总结前言 Sweetviz是一个开源Python库,它只需三行代码就可以生成漂亮的高精度可视化效果来启动EDA(探索性数据分析)。输出一个HTML。 如上图所示,它不仅能根据性别、年龄等…...

springboot——集成elasticsearch进行搜索并高亮关键词

目录 1.elasticsearch概述 3.springboot集成elasticsearch 4.实现搜索并高亮关键词 1.elasticsearch概述 (1)是什么: Elasticsearch 是位于 Elastic Stack 核心的分布式搜索和分析引擎。 Lucene 可以被认为是迄今为止最先进、性能最好的…...

MATLAB绘制局部放大图

MATLAB绘制局部放大图 1 工具准备 MATLAB官网-ZoomPlot(Kepeng Qiu. Matlab Central, 2022) 初始数据图绘制完成后,调用以下代码: %% 添加局部放大 zp BaseZoom(); zp.plot;1.1 具体绘制步骤 具体绘制步骤如下: 通过鼠标左键框选作图区…...

第十三天缓存一致性篇

目录 一、缓存的应用场景 二、缓存数据一致性如何保证? 三、缓存的最终一致性解决方案: 一、缓存的应用场景 1、缓存中的数据不应该是实时性一致性要求超高的, 通过缓存加上过期时间保证每天拿到的数据都是最新的即可。 2、如果实时性要求…...

VSCode使用Remote SSH远程连接Linux服务器【远程开发】

文章目录前言视频教程1、安装OpenSSH2、vscode配置ssh3. 局域网测试连接远程服务器4. 公网远程连接4.1 ubuntu安装cpolar4.2 创建隧道映射4.3 测试公网远程连接5. 配置固定TCP端口地址5.1 保留一个固定TCP端口地址5.2 配置固定TCP端口地址5.3 测试固定公网地址远程转发自CSDN远…...

人工智能专题-知识表示

文章目录人工智能专题-知识表示大纲2.1 知识表示的概念2.1.1 知识表示观点2.1.2 知识表示的要求2.2 一阶谓词逻辑表示法2.2.1 一阶谓词概念2.2.2 谓词逻辑表示方法2.3 产生式表示法2.4 语义网络表示法2.5 框架表示法人工智能专题-知识表示 大纲 大纲:掌握知识表示方…...

各种过滤器使用场景

授权过滤器的使用场景有以下几种: 判断用户是否登录或具有访问权限,如使用Authorize特性来限制只有通过身份验证的用户才能访问某些控制器或操作方法。 实现自定义的授权逻辑,如根据用户的角色、权限、IP地址等来决定是否允许访问。 实现一…...

第04章_IDEA的安装与使用(下)

第04章_IDEA的安装与使用(下) 讲师:尚硅谷-宋红康(江湖人称:康师傅) 官网:http://www.atguigu.com 8. 快捷键的使用 8.1 常用快捷键 见《尚硅谷_宋红康_IntelliJ IDEA 常用快捷键一览表.md》…...

2023年全国最新道路运输从业人员精选真题及答案51

百分百题库提供道路运输安全员考试试题、道路运输从业人员考试预测题、道路安全员考试真题、道路运输从业人员证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 7.A危险货物运输企业一辆载有甲醇的罐式车辆,在晚上…...

Baumer工业相机堡盟工业相机如何通过BGAPISDK显示Bayer彩色格式的图像(C#)

Baumer工业相机堡盟工业相机如何通过BGAPISDK显示Bayer彩色格式的图像(C#)Baumer工业相机Baumer工业相机的Bayer彩色图像的技术背景Baumer工业相机通过BGAPI SDK在回调函数里显示Bayer彩色图像Baumer工业相机在BufferEvent显示Bayer彩色图像Baumer工业相…...

Unity云渲染,加移动

上次我们根据官方所推出的教程,完成了云渲染,这次我们加个移动。 原谅我又水一篇文章😄😄😄😄😄😄😄😄😄 云渲染的文章看这里:Unity…...

ASP一个简单的网上教务系统模型的设计与实现

对于一个学校来说,大量教师信息,学生信息管理,学生成绩管理,基本数据的维护都难于通过传统的方法进行管理:这就迫切需要利用计算机技术来帮助学校管理者处理这些日常管理。本系统正是为了简化教学任务的管理&#xff0…...

黑马点评实战篇问题总结

缓存穿透 用户查询的数据在缓存和数据库中都不存在 这样的请求每次都会打到数据库上 解决方案: 1.缓存空字符串(额外的内存消耗,可能造成短期的不一致) 2.布隆过滤(内存占用少,没有多余key,实现…...

C++ 并发编程

文章目录基本概念编程创建线程启动共享数据相关条件变量时间相关future相关——等待一次性事件读写锁原子操作与缓存一致性关系线程管理启动线程从类的方法来创建线程传参标识线程常用API等待线程完成后台运行线程移动线程间共享数据互斥量(mutex)unique…...