数据结构和算法学习记录——层序遍历(层次遍历)、二叉树遍历的应用(输出二叉树中的叶节点、求二叉树的高度、二元运算表达式树及其遍历、由两种遍历序列确定二叉树)
目录
层序遍历
思路图解
代码实现
二叉树遍历的应用
输出二叉树中的叶节点
代码实现
求二叉树的高度
思路图解
代码实现
二元运算表达式树及其遍历
由两种遍历序列确定二叉树
层序遍历
层序遍历可以通过一个队列来实现,其基本过程为:
先根节点入队,然后:
- 从队列中取出一个元素;
- 访问该元素所指的节点;
- 若该元素所指节点的左、右孩子节点非空, 则将其左、右孩子的指针顺序入队。
- 循环123的步骤,直到队列为空。
思路图解
代码实现
void LevelOrderTraversal(BinTree BT)
{Queue Q;BinTree T;if (!BT){return; //若为空树则直接返回}Q = CreateQueue(); //创建并初始化队列QAdd(Q, BT);while (!IsEmptyQ(Q)){T = DeleteQ(Q);printf("%d\n", T->data); //访问取出来的节点//若该元素的左右孩子节点不为空,则依次入队if (T->Left){AddQ(Q, T->Left); }if (T->Right){AddQ(Q, T->Right);}}
}
二叉树遍历的应用
输出二叉树中的叶节点
之前讲过的递归先序遍历二叉树写法很简单,而要输出二叉树中的叶节点,就可以在进行遍历的过程中进行检测,如果为叶节点则输出,否则继续遍历。 叶节点即左孩子节点为空、右孩子节点也为空。
代码实现
void PreOrderPrintLeaves(BinTree BT)
{if (BT){if (!BT->Left && !BT->Right)printf("%d ", BT->data);PreOrderPrintLeaves(BT->Left);PreOrderPrintLeaves(BT->Right);}
}
求二叉树的高度
树是递归定义的,一颗二叉树的高度应该等于左右两颗子树的最大高度+1 求二叉树的高度,利用的是后序遍历的一种程序框架来实现的。
思路图解
代码实现
int PostOrderGetHeight(BinTree BT)
{int HL, HR, MaxH;if (BT){HL = PostOrderGetHeight(BT->Left); //求左子树的高度HR = PostOrderGetHeight(BT->Right); //求右子树的高度MaxH = (HL > HR) ? HL : HR; //取左右子树的最大高度return (MaxH + 1); //返回树的高度}else{return 0; //空树的高度为0}
}
二元运算表达式树及其遍历
对上面的表达式树进行三种遍历,可以得到三种不同的访问结果:
试着分别写出上面表达式树前序中序和后序遍历的不同表达式,复习一遍之前讲的树的遍历。
先序遍历可以得到前缀表达式:++a*bc*+*defg
中序遍历可以得到中缀表达式:a+b*c+d*e+f*g
后序遍历可以得到后缀表达式:abc*+de*f+g*+
但需要注意的是:中缀表达式会受到运算符优先级的影响,所以单单这样通过中序遍历得出的中缀表达式是不完全准确的。
解决方法是:在输出左子树之前,先输出一个左括号,左子树结束的时候再输出一个右括号。
由两种遍历序列确定二叉树
已知三种遍历中的任意两种遍历序列,能否唯一确定一颗二叉树呢?
答案是:两种遍历序列中,必须要有一种是中序遍历才能够唯一确定一颗二叉树。
假设没有中序,看下面两个序列:
先序遍历序列:A B
后序遍历序列:B A
像这样一组简单的序列,只有先序遍历序列和后序遍历序列的情况下,就有两颗是符合的二叉树,其中根节点是容易确定的,先序的第一个节点就是根,后序的最后一个节点就是根;但是左右节点是不好区分的,所以就导致了只有先序序列和后序序列的情况下没法唯一地确认一颗二叉树。
下面就来看看,已知先序序列和中序序列,怎么样来确定一颗二叉树。
思路:
- 根据先序遍历序列第一个节点确定根节点;
- 根据根节点在中序遍历序列中分割出左右两个子序列;
- 对左子树和右子树分别递归使用相同的方法继续分解。
举个例子清晰一下思路:
先序序列: abcdefghij
中序序列: cbedahgijf
所以最终通过先序遍历序列和中序遍历序列唯一确定的二叉树就为:
end
学习自:MOOC数据结构——陈越、何钦铭
相关文章:

数据结构和算法学习记录——层序遍历(层次遍历)、二叉树遍历的应用(输出二叉树中的叶节点、求二叉树的高度、二元运算表达式树及其遍历、由两种遍历序列确定二叉树)
目录 层序遍历 思路图解 代码实现 二叉树遍历的应用 输出二叉树中的叶节点 代码实现 求二叉树的高度 思路图解 代码实现 二元运算表达式树及其遍历 由两种遍历序列确定二叉树 层序遍历 层序遍历可以通过一个队列来实现,其基本过程为: 先根…...

【Neo4j数据库】图数据库_Neo4j增加节点(关系)、查询、删除数据库等操作解析(Cypher语句)
【Neo4j数据库】图数据库_Neo4j增加节点(关系)、查询、删除操作解析(Cypher语句) 文章目录 【Neo4j数据库】图数据库_Neo4j增加节点(关系)、查询、删除操作解析(Cypher语句)1. 介绍2…...

Linux移动文件和文件夹(目录)命令
命令mv 英文move 翻译移动 mv命令可以移动文件或文件夹(目录),也可以重命令(覆盖)文件。 1. 移动文件/重命名 单纯地移动某一个文件直接使用: mv <源文件名称/地址> <新文件名称/地址>这个方法…...

Pandas的应用-5
Pandas是一个强大的数据处理库,它提供了高性能、易于使用的数据结构和数据分析工具。本文将介绍Pandas常用的数据结构和常用的数据分析技术,包括DataFrame的应用、窗口计算、相关性判定、Index的应用、范围索引、分类索引、多级索引以及日期时间索引。 …...

java继承类怎么写
继承类是通过把父类的方法和属性继承到一个类中,而子类的方法和属性是子类自己定义的。 Java中有一个很重要的概念叫做继承,这也是 Java语言的精髓所在。Java语言提供了一种机制,叫做派生类。在 Java中,如果没有实现了某个派生类方…...

面向对象程序设计
OOP 【面向对象程序设计】(OOP)与【面向过程程序设计】在思维方式上存在着很大的差别。【面向过程程序设计】中,算法是第一位的,数据结构是第二位的,这就明确地表述了程序员的工作方式。首先要确定如何操作数据&#…...

Linux 用户身份切换(su,sudo)
文章目录 Linux 用户身份切换su使用案例 sudo使用案例 visudo与/etc/sudoers单一用户可使用root所有命令,与sudoers文件语法利用wheel用户组以免密码的功能处理visudo有限制的命令操作通过别名创建visudosudo的时间间隔问题sudo搭配su的使用方式 Linux 用户身份切换…...

求倒置数问题
文章目录 求倒置数程序设计程序分析求倒置数 【问题描述】数组A【0,…,n-1】是一个n个不同整数数构成的数组。如果i<j,但是A[i]〉A[j],则这对元素(A[i],A[j])被称为一个倒置(inversion)。设计一个O(nlogn)算法来计算数组中的倒置数量 【输入形式】输入两行,第一行…...

sed(学习)
1、清除环境变量 profile~/.bash_profile sed -i s#export LD_LIBRARY_PATH.*##g $profile 2、设置环境变量(替换值) sed -i s#export LD_LIBRARY_PATH.*#export LD_LIBRARY_PATH/opt/testlinux/lib#g ~/.bash_profile 3、修改配置文件 sdk_dir/root/test log_dir/…...

B - GCD Subtraction
文章目录 AtCoder Regular Contest 159B - GCD Subtraction AtCoder Regular Contest 159 B - GCD Subtraction 问题:每次A,B都减去gcd(A,B),求其中一个减到0至少需要多少次主要思路: 首先第一步应该想到每次减去的数,先减去的数…...

解决Failed to load ApplicationContext问题的思路
中文翻译: 加载ApplicationContext失败 第一步:首先检查测试类的注解 以及 依赖 SpringBootTest <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scop…...

基于CAMX大气臭氧来源解析模拟与臭氧成因分析实践技术应用
查看原文>>>基于CAMX大气臭氧来源解析模拟与臭氧成因分析实践技术应用 目录 专题一、大气臭氧污染来源及成因分析技术讲解;CAMx模式初识及臭氧来源解析模拟本地案例配置说明 专题二、CAMx模式编译安装及空气质量模拟案例配置 专题三、CAMx扩展和探测工…...

异常的讲解 (1)
目录 异常入门的案例 异常介绍 基本概念 异常的小结 常见的运行时异常 1.NullPointerException空指针异常 2.ArithmeticException数学运算异常 3.ArraylndexOutOfBoundsException数组下标越界异常 4.ClassCastException类型转换异常 5.NumberFormatException数字格式不…...

Prometheus - Grafana 监控 MySQLD Linux服务器 demo版
目录 首先是下载Prometheus 下载和安装 配置Prometheus 查看监控数据 监控mysql demo 部署 mysqld_exporter 组件 配置 Prometheus 获取监控数据 -------------------------------------- 安装和使用Grafana 启动Grafana -------------------------------------- 配…...

应届生,实力已超6年,太卷了!
你好,我是田哥 今晚上,给一位朋友做模拟面试,原本说好的90分钟左右,结果整了2个多小时。 很多人估计也很好奇,我们这两个多小时聊聊什么,下面我给大致总结一下: 面试技巧 面试中,我们…...

0-1背包问题
文章目录 0-1背包问题JavaPython0-1背包问题 【问题描述】 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 【输入形式】 第一行输入物品的个数n和背包容量C。 第二行输入每个物品的价值v[i…...

VUE前端项目环境搭建
背景: 想要使用vue搭建一个前端项目,写个小网站练练手,因为没有前端经验,所以从网上找了一个vue得开源模板使用,经过一番挑选选中了字节公司花裤衩大佬开源得项目,地址如下: 开源项目地址&…...

VMware安装Win2000安装程序闪退重启等问题的解决方法
VMware安装Win2000安装程序闪退重启等问题的解决方法 【症状】 1、比较新的VMware版本如16.2.5,Win2000安装时,安装程序在安装Distributed Transaction Coordinator时闪退重启 2、比较新的VMware版本如17.0.1,还会发生显示跳跃性卡顿的现象…...

【id:45】【20分】A. Equation(类与对象+构造)
题目描述 建立一个类Equation,表达方程ax2bxc0。类中至少包含以下方法: 1、无参构造(abc默认值为1.0、1.0、0)与有参构造函数,用于初始化a、b、c的值; 2、set方法,用于修改a、b、c的值 3、ge…...

数据库事务
什么是事务 在数据库中,事务(Transaction)是指一组数据库操作,这些操作要么全部成功执行,要么全部失败回滚,是保证数据库操作一致性的基本单位。事务具有原子性(Atomicity)、一致性…...

Macbook(苹果电脑) VSCode 创建简单c++程序 配置C++开发环境
1.打开 Terminal 终端(Command空格,输入Terminal)。 1.1 输入如下指令,查看是否显示版本信息。 clang --version 1.2 如果出现版本信息,则跳过,否则输入 xcode-select --install 2. 为 VS Code 安装插件 …...

如何使用 Matlab 构建深度学习模型
深度学习已经成为了AI领域的热门话题,相信很多人都想学习如何构建深度学习模型,那么,我们就一起来看看如何使用Matlab构建深度学习模型。 首先,我们需要准备好Matlab的环境。Matlab是一款非常强大的数学计算软件,它提…...

PDF怎么转CAD文件?(免费!高效转换方法汇总)
一般而言,PDF图纸是不能修改的。若需修改,则需将PDF转CAD,此时如何满足PDF转CAD的需求呢?今天,我将教你两种免费的PDF转CAD的方法,助力高效办公。 1.本地软件转换法 这是用本地软件转换方法,支…...

经历了野蛮生长之后,新科技或许已经抵达了全新的临界点
跳出仅仅只是以概念和营销的方式来定义元宇宙,真正找到元宇宙与现实商业之间的桥接,让元宇宙可以在真实实践上得到复现,才是保证元宇宙的发展可以进入到一个全新发展阶段的关键所在。归根到底,我们还是要找到元宇宙落地的正确的方…...

Segment Anything论文翻译,SAM模型,SAM论文,SAM论文翻译;一个用于图像分割的新任务、模型和数据集;SA-1B数据集
【论文翻译】- Segment Anything / Model / SAM论文 论文链接: https://arxiv.org/pdf/2304.02643.pdfhttps://ai.facebook.com/research/publications/segment-anything/ 代码连接:https://github.com/facebookresearch/segment-anything 论文翻译&…...

EMQX vs NanoMQ | 2023 MQTT Broker 对比
引言 EMQX 和 NanoMQ 都是由全球领先的开源物联网数据基础设施软件供应商 EMQ 开发的开源 MQTT Broker。 EMQX 是一个高度可扩展的大规模分布式 MQTT Broker,能够将百万级的物联网设备连接到云端。NanoMQ 则是专为物联网边缘场景设计的轻量级 Broker。 本文中我们…...

RabbitMQ实现消息的延迟推送或延迟发送
一、RabbitMQ是什么? 1.RabbitMQ简介 RabbitMQ是有erlang语言开发,基于AMQP(Advanced Message Queue 高级消息队列协议)协议实现的消息队列。 常见的消息队列有:RabbitMQ、Kafka 和 ActiveMQ 2.RabbitMQ的优点 Rab…...

解决python中import导入自己的包呈现灰色 无效的问题
打开File–> Setting—> 打开 Console下的Python Console,把选项(Add source roots to PYTHONPAT)点击勾选上。 右键点击需要导入的工作空间文件夹,找到Mark Directory as 选择Source Root。 另外,Python中的…...

消息中间件对比
1,常见消息中间件对比(后续逐个介绍) 比较项TubeMQKafkaPulsar数据时延非常低,10ms比较低,250ms非常低,10msTPS高,14W/s一般,10W/s高,14W/s (高性能场景)过滤消费支持服务端过滤和客户端过滤客…...

nodejs+vue 高校校园食堂餐品在线订购网
食堂作为学校的一个重要的部门,为学生提供了用餐的地点,学生可以在食堂享用丰富的餐品,建立一个在校订餐网站,帮助了学生提供一个用餐订餐的系统,也帮助了食堂提供了一个餐品展示的站点。 园的食堂作为一个窗口单位&a…...