Pandas的应用-1
Pandas是一个开源的数据分析工具,它提供了高性能、易于使用的数据结构和数据分析工具。其中,Series是Pandas中最基本的数据结构之一,它是一种类似于一维数组的对象,可以储存任何数据类型。在本文中,我们将介绍Series的应用,包括如何创建Series对象、索引和切片、属性和方法、以及如何绘制图表。
创建Series对象
在Pandas中,可以使用pd.Series()函数来创建Series对象。下面是一个简单的例子:
import pandas as pddata = [1, 2, 3, 4, 5]
s = pd.Series(data)print(s)
输出结果如下:
0 1
1 2
2 3
3 4
4 5
dtype: int64
在上面的例子中,我们创建了一个包含5个整数的Series对象。可以看到,每个元素都有一个默认的索引值,从0开始递增。如果我们想指定索引值,可以使用index参数:
import pandas as pddata = [1, 2, 3, 4, 5]
index = ['a', 'b', 'c', 'd', 'e']
s = pd.Series(data, index=index)print(s)
输出结果如下:
a 1
b 2
c 3
d 4
e 5
dtype: int64
在上面的例子中,我们指定了一个包含5个元素的索引列表,并将其作为pd.Series()函数的第二个参数传递。
除了使用列表创建Series对象之外,我们还可以使用字典创建Series对象。例如,下面的例子将字典中的值作为Series对象的值,将字典中的键作为Series对象的索引:
import pandas as pddata = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
s = pd.Series(data)print(s)
输出结果如下:
a 1
b 2
c 3
d 4
e 5
dtype: int64
索引和切片
与Python中的列表类似,Series对象可以使用索引和切片来访问元素。例如,要访问第一个元素,可以使用索引值0:
import pandas as pddata = [1, 2, 3, 4, 5]
s = pd.Series(data)print(s[0])
输出结果为:
1
要访问多个元素,可以使用切片。例如,要访问前三个元素,可以使用切片[:3]:
import pandas as pddata = [1, 2, 3, 4, 5]
s = pd.Series(data)print(s[:3])
输出结果为:
0 1
1 2
2 3
dtype: int64
除了使用整数索引和切片之外,我们还可以使用标签索引和切片。例如,对于使用标签索引的Series对象,我们可以使用标签访问元素:
import pandas as pddata = [1, 2, 3, 4, 5]
index = ['a', 'b', 'c', 'd', 'e']
s = pd.Series(data, index=index)print(s['a'])
输出结果为:
1
对于使用标签切片的Series对象,我们可以使用标签切片访问元素:
import pandas as pddata = [1, 2, 3, 4, 5]
index = ['a', 'b', 'c', 'd', 'e']
s = pd.Series(data, index=index)print(s['a':'c'])
输出结果为:
a 1
b 2
c 3
dtype: int64
属性和方法
在Pandas中,Series对象有许多有用的属性和方法。下面是一些常用的属性和方法:
values:返回Series对象的值(不包括索引)index:返回Series对象的索引size:返回Series对象的大小shape:返回Series对象的形状head(n):返回Series对象的前n个元素tail(n):返回Series对象的后n个元素describe():返回Series对象的统计信息,包括计数、均值、标准差、最小值、25%分位数、中位数、75%分位数和最大值
下面是一个使用这些属性和方法的例子:
import pandas as pddata = [1, 2, 3, 4, 5]
index = ['a', 'b', 'c', 'd', 'e']
s = pd.Series(data, index=index)print(s.values)
print(s.index)
print(s.size)
print(s.shape)
print(s.head(2))
print(s.tail(2))
print(s.describe())
输出结果为:
[1 2 3 4 5]
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
5
(5,)
a 1
b 2
dtype: int64
d 4
e 5
dtype: int64
count 5.000000
mean 3.000000
std 1.581139
min 1.000000
25% 2.000000
50% 3.000000
75% 4.000000
max 5.000000
dtype: float64
绘制图表
Pandas内置了许多绘图工具,可以轻松地将Series对象的数据可视化。下面是一个简单的例子:
import pandas as pd
import matplotlib.pyplot as pltdata = [1, 2, 3, 4, 5]
index = ['a', 'b', 'c', 'd', 'e']
s = pd.Series(data, index=index)s.plot(kind='bar')
plt.show()
输出结果如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FegUJqkg-1681724609110)(null)]
在上面的例子中,我们使用plot()方法将Series对象的数据绘制成柱状图,并使用show()方法显示图表。
除了柱状图之外,Pandas还支持多种类型的图表,包括折线图、散点图、饼图等。例如,下面的例子使用plot()方法将Series对象的数据绘制成折线图:
import pandas as pd
import matplotlib.pyplot as pltdata = [1, 2, 3, 4, 5]
index = ['a', 'b', 'c', 'd', 'e']
s = pd.Series(data, index=index)s.plot(kind='line')
plt.show()
总结
在本文中,我们介绍了Pandas中Series的应用,包括如何创建Series对象、索引和切片、属性和方法、以及如何绘制图表。Pandas强大而灵活的数据结构和数据分析工具,使得我们可以轻松地处理和分析各种数据集。除了Series之外,Pandas还提供了DataFrame、Panel等多种数据结构,可以满足不同类型的数据分析需求。如果您有兴趣了解更多关于Pandas的知识,请参考Pandas的官方文档。
相关文章:
Pandas的应用-1
Pandas是一个开源的数据分析工具,它提供了高性能、易于使用的数据结构和数据分析工具。其中,Series是Pandas中最基本的数据结构之一,它是一种类似于一维数组的对象,可以储存任何数据类型。在本文中,我们将介绍Series的…...
【状态估计】电力系统状态估计的虚假数据注入攻击建模与对策(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
【Spring】Spring @Import注解的使用和源码分析
文章目录 介绍Import导入bean的三种方式普通类ImportSelector接口ImportBeanDefinitionRegistrar接口 源码解析总结 介绍 今天主要介绍Spring Import注解,在Spring中Import使用得比较频繁,它得作用是导入bean,具体的导入方式有多种ÿ…...
C++中的类与对象
类与对象 我们在C语言中自定义的struct 叫做结构体,而在C中我们把struct升级为了类,并且还加入了一个class,也称为类,那么我们今天就来看一下结构体和类的不同和相同 1.结构体与类 我们在C语言中的结构体是struct,而…...
探索Qt图像处理的奥秘:从入门到精通
探索Qt图像处理的奥秘:从入门到精通(Exploring the Secrets of Qt Image Processing: From Beginner to Expert) 引言:Qt图像处理的概述和应用(Introduction: Overview and Applications of Qt Image Processing&#…...
springboot+vue企业人事人力资源管理系统java公司员工出差考勤办公OA系统
“简易云”是这个系统的名字 (6)系统管理:主要下拉分为角色管理、菜单管理; 角色管理:此页面可对角色进行增删改查操作,可修改不同角色的权限; 菜单管理:此页面可配置系统可展示的菜…...
设计模式-模板模式在Java中的使用示例
场景 模板模式 模板模式又叫模板方法模式(Template Method Pattern),是指定义一个算法的骨架,并允许子类为一个 或者多个步骤提供实现。 模板模式使得子类可以在不改变算法结构的情况下,重新定义算法的某些步骤,属于行为型设计模式。 模…...
回溯算法及其应用
回溯是一种常见的算法思想,用于解决许多优化问题。该算法的核心思想是穷举所有可能的解决方案,然后通过剪枝来减少不必要的计算,以获得最优解。 回溯算法常用于求解组合、排列、子集和等问题。通常情况下,回溯算法需要递归地搜索…...
如何一步步打造完美的成绩查询系统平台?
想要搭建一个高效的在线发布成绩查询系统平台,首先需要了解哪些技术和工具是必备的。本文将为您介绍一些主流的技术和工具,帮助您快速搭建一个稳定、安全、易用的成绩查询系统。 想要制作在线成绩查询系统平台有两种方式,第一种是直接使用易…...
P1026 [NOIP2001 提高组] 统计单词个数
题目描述 给出一个长度不超过 200200 的由小写英文字母组成的字母串(该字串以每行 2020 个字母的方式输入,且保证每行一定为 2020 个)。要求将此字母串分成 �k 份,且每份中包含的单词个数加起来总数最大。 每份中包含…...
CTFHub | eval执行
0x00 前言 CTFHub 专注网络安全、信息安全、白帽子技术的在线学习,实训平台。提供优质的赛事及学习服务,拥有完善的题目环境及配套 writeup ,降低 CTF 学习入门门槛,快速帮助选手成长,跟随主流比赛潮流。 0x01 题目描述…...
IP协议头
IP 4位版本号(version)4位头部长度(header length)8位服务类型(Type Of Service)16位总长度(total length)16位标识(id)3位标志字段13位分片偏移(…...
【xxl-job定时任务框架详解】
一,分布式任务调度 基本概念 分布式任务调度是一种用于在分布式环境中调度和执行任务的技术。在分布式系统中,由于存在多台服务器、多个进程和线程并行执行,因此需要一种机制来协调和管理任务的执行,避免任务冲突、重复执行、负载不均衡等问题。分布式任务调度通常由一个…...
7、在vscode上利用cmake构建多文件C++工程
文章目录 (1)创建如下工程文件夹:其中头文件放在include文件夹中,源文件放在src文件夹中(2)在vscode上打开工程文件夹,在对应的文件夹内建立相应的文件1)目录结构2)各文件…...
Linux操作系统网络模块
Linux操作系统的网络模块是负责网络通信的核心部分。它通过实现各种协议和算法,使得计算机能够在网络中进行数据交换和通信。网络模块主要包括以下几个方面的功能: (1)IP协议栈:负责处理网络层的数据包,实…...
不同批次板子采集到的传感器压力值不同
问题描述: M340B空压机主控板在接正常压力气源时,显示屏显示压力值过高并报警。 问题排查: 确认可能的故障点:压力传感器、硬件电路(供电电路、分压电路、ADC采样电路等)、单片机、软件; 排…...
设计模式--原型模式
目录 基本介绍 传统方式克隆 原型模式改进 浅拷贝和深拷贝 浅拷贝的介绍 深拷贝的介绍 原型模式的注意事项和细节 基本介绍 (1) 原型模式(prototype模式): 用原型实例指定创建对象的种类 并且通过拷贝这些原型 创建新的对象 (2) 原型模式是一种创建型设计模式 允许一个…...
C++智能指针shared_ptr详解
智能指针shared_ptr详解 一、简介二、底层原理2.1、引用计数2.2、shared_ptr的构造和析构2.3、shared_ptr的共享和拷贝2.4、循环引用问题 三、shared_ptr的使用3.1、创建一个shared_ptr3.2、共享一个shared_ptr3.3、使用删除器3.4、解除关联 四、使用示例总结 一、简介 C智能指…...
家政服务APP小程序开发功能详解
随着人们生活水平的提高,对家政服务的要求也越来越高。而传统的到家政公司寻找服务人员的方法显然已经无法满足人们需求,取而代之的是线上预约家政服务。家政服务App小程序软件可以满足用户在线预约,还可以根据自己的需求定制家政服务、选择家…...
【C++】deque的实现原理简单介绍
前言 deque被称为双端队列,它的出现主要是为了结合vector和list的优点并减小它们的缺点,实际上deque确实结合了vector和list的优点减小了它们的缺点,但是它的结合也让它自己的优点没有原始的vector和list那么极致,导致deque变得很…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
