当前位置: 首页 > news >正文

QT+ OpenGL 变换

文章目录

  • QT+ OpenGL
    • 变换
      • 向量的运算
      • 矩阵
      • 矩阵与向量相乘
      • 代码实现

QT+ OpenGL

本篇完整工程见gitee:QTOpenGL 对应点的tag,由turbolove提供技术支持,您可以关注博主或者私信博主。

变换

我们需要改变物体的位置

现有解决办法(每一帧,改变顶点位置(所有顶点))

每个顶点使用向量表示,使用矩阵表示对应顶点的操作。

向量的运算

向量是有方向和大小的量
a⃗=(xyz)\vec{a} = \left(\begin{matrix} x \\ y \\z \end{matrix}\right) a=xyz
向量与标量运算
标量(Scalar)只是一个数字(或者说是仅有一个分量的向量)。当把一个向量加/减/乘/除一个标量,我们可以简单的把向量的每个分量分别进行该运算。对于加法来说会像这样:
(123)+x=(1+x2+x3+x)\left(\begin{matrix}1 \\ 2 \\3 \end{matrix}\right) + x = \left(\begin{matrix}1+x \\ 2+x \\3+x \end{matrix}\right) 123+x=1+x2+x3+x
其中的+可以是+,-,·或÷,其中·是乘号。注意-和÷运算时不能颠倒(标量-/÷向量),因为颠倒的运算是没有定义的。

向量取反
−a⃗=−(xyz)=(−x−y−z)-\vec{a} = -\left(\begin{matrix}x \\ y \\z \end{matrix}\right)= \left(\begin{matrix}-x \\ -y \\-z \end{matrix}\right) a=xyz=xyz
向量加减
a⃗=(123),b⃗=(123),a⃗+b⃗=(1+12+23+3)=(246)\vec{a} = \left(\begin{matrix}1 \\ 2 \\3 \end{matrix}\right),\vec{b} = \left(\begin{matrix}1 \\ 2 \\3 \end{matrix}\right),\vec{a}+\vec{b} = \left(\begin{matrix}1 + 1\\ 2 + 2 \\3 +3 \end{matrix}\right) = \left(\begin{matrix}2 \\ 4 \\ 6 \end{matrix}\right) a=123,b=123,a+b=1+12+23+3=246
长度
∣v⃗∣=x2+y2(1)|\vec{v}|=\sqrt{x^2+y^2} \tag{1} v=x2+y2(1)
向量相乘

  • 点乘法: a⃗⋅b⃗\vec{a}\cdot\vec{b}ab

a⃗⋅b⃗=∣a⃗∣⋅∣b⃗∣⋅cosθ\vec{a} \cdot \vec{b} =|\vec{a}|\cdot|\vec{b}|\cdot cos\theta ab=abcosθ

  • 叉乘法 : a⃗×b⃗\vec{a}\times\vec{b}a×b
    公式如下:
    a⃗×b⃗=(AxAyAz)×(BxByBz)=(Ay⋅Bz−Az⋅ByAz⋅Bx−Ax⋅BzAx⋅By−Ay⋅Bx)\vec{a}\times\vec{b} =\left( \begin{matrix} \textcolor{#FF0000}{Ax} \\ \textcolor{#00FF00}{Ay} \\ \textcolor{#0000FF}{Az} \end{matrix}\right) \times \left(\begin{matrix} \textcolor{#FF0000}{Bx} \\ \textcolor{#00FF00}{By} \\ \textcolor{#0000FF}{Bz}\end{matrix}\right) = \left(\begin{matrix}\textcolor{#00FF00}{Ay} \cdot \textcolor{#0000FF}{Bz} - \textcolor{#0000FF}{Az} \cdot \textcolor{#00FF00}{By} \\ \textcolor{#0000FF}{Az} \cdot \textcolor{#FF0000}{Bx} - \textcolor{#FF0000}{Ax} \cdot \textcolor{#0000FF}{Bz} \\ \textcolor{#FF0000}{Ax} \cdot \textcolor{#00FF00}{By} - \textcolor{#00FF00}{Ay} \cdot \textcolor{#FF0000}{Bx }\end{matrix}\right) a×b=AxAyAz×BxByBz=AyBzAzByAzBxAxBzAxByAyBx

矩阵

一个矩形的数字、符号或者表达式的数组。矩阵中的每一项叫做矩阵的元素
[011110101]\left[\begin{matrix} 0&1&1\\ 1&1&0\\ 1&0&1\\ \end{matrix}\right] 011110101
矩阵的加减

矩阵与标量之间的加减定义如下
[0111]+‾1=[0+‾11+‾11+‾11+‾1]\left[\begin{matrix} 0&1\\ 1&1\\ \end{matrix}\right] \underline+ 1 = \left[\begin{matrix} 0 \underline +1&1\underline + 1\\ 1\underline + 1&1 \underline + 1\\ \end{matrix}\right] [0111]+1=[0+11+11+11+1]
矩阵与矩阵之间的加减就是两个矩阵对应元素的加减运算
[0123]+‾[0123]=[0+‾01+‾12+‾23+‾3]加法=[0246]减法=[0000]\left[\begin{matrix} 0&1\\ 2&3\\ \end{matrix}\right] \underline+ \left[\begin{matrix} 0&1\\ 2&3\\ \end{matrix}\right] = \left[\begin{matrix} 0\underline+0&1\underline+1\\ 2\underline+2&3\underline+3\\ \end{matrix}\right] 加法= \left[\begin{matrix} 0&2\\ 4&6\\ \end{matrix}\right] 减法= \left[\begin{matrix} 0&0\\ 0&0\\ \end{matrix}\right] [0213]+[0213]=[0+02+21+13+3]加法=[0426]减法=[0000]
矩阵的数乘
和矩阵与标量的加减一样,矩阵与标量之间的乘法也是矩阵的每一个元素分别乘以该标量。
[0111]⋅2=[0⋅21⋅21⋅21⋅2]=[0222]\left[\begin{matrix} 0&1\\ 1&1\\ \end{matrix}\right] \cdot 2 = \left[\begin{matrix} 0 \cdot2&1\cdot 2\\ 1\cdot 2&1 \cdot 2\\ \end{matrix}\right]= \left[\begin{matrix} 0&2\\ 2&2\\ \end{matrix}\right] [0111]2=[02121212]=[0222]
矩阵相乘
矩阵之间的乘法不见得有多复杂,但的确很难让人适应。矩阵乘法基本上意味着遵照规定好的法则进行相乘。当然,相乘还有一些限制:

  1. 只有当左侧矩阵的列数与右侧矩阵的行数相等,两个矩阵才能相乘。
  2. 矩阵相乘不遵守交换律(Commutative),也就是说A⋅B≠B⋅AA \cdot B \not= B \cdot AAB=BA
    公式如下:
    [1234]⋅[5678]=[1⋅5+2⋅71⋅6+2⋅83⋅5+4⋅73⋅6+4⋅8]=[19224350]\left[\begin{matrix} 1&2\\ 3&4\\ \end{matrix}\right] \cdot \left[\begin{matrix} 5&6\\ 7&8\\ \end{matrix}\right] = \left[\begin{matrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6+ 2 \cdot 8\\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6+ 4 \cdot 8\\ \end{matrix}\right] = \left[\begin{matrix} 19&22\\ 43&50\\ \end{matrix}\right] [1324][5768]=[15+2735+4716+2836+48]=[19432250]

矩阵与向量相乘

向量就是一个N×1N \times 1N×1的矩阵

单位矩阵就是一个除了对角线以为都是0的 N×NN \times NN×N的矩阵
[1000010000100001]⋅[1234]=[1⋅12⋅23⋅34⋅4]=[1234]\left[\begin{matrix} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{matrix}\right] \cdot \left[\begin{matrix} 1\\ 2\\ 3\\ 4\\ \end{matrix}\right] = \left[\begin{matrix} 1 \cdot 1\\ 2 \cdot 2\\ 3 \cdot 3\\ 4 \cdot 4\\ \end{matrix}\right] = \left[\begin{matrix} 1\\ 2\\ 3\\ 4\\ \end{matrix}\right] 10000100001000011234=11223344=1234
缩放

OpenGL通常是在3D空间进行操作的,对于2D的情况我们可以把z轴缩放1倍,这样z轴的值就不变了。我们刚刚的缩放操作是不均匀(Non-uniform)缩放,因为每个轴的缩放因子(Scaling Factor)都不一样。如果每个轴的缩放因子都一样那么就叫均匀缩放(Uniform Scale)。
[S10000S20000S300001]⋅(xyz1)=(S1⋅xS2⋅yS3⋅z1)\left[\begin{matrix} S1&0&0&0\\ 0&S2&0&0\\ 0&0&S3&0\\ 0&0&0&1\\ \end{matrix}\right] \cdot \left(\begin{matrix} x\\ y\\ z\\ 1\\ \end{matrix}\right) = \left(\begin{matrix} S1 \cdot x\\ S2 \cdot y\\ S3 \cdot z\\ 1\\ \end{matrix}\right) S10000S20000S300001xyz1=S1xS2yS3z1
位移

位移(Translation)是在原始向量的基础上加上另一个向量从而获得一个在不同位置的新向量的过程,从而在位移向量基础上移动了原始向量。我们已经讨论了向量加法,所以这应该不会太陌生。

[100Tx010Ty001Tz0001]⋅(xyz1)=(x+Txy+Tyz+Tz1)\left[\begin{matrix} 1&0&0&Tx\\ 0&1&0&Ty\\ 0&0&1&Tz\\ 0&0&0&1\\ \end{matrix}\right] \cdot \left(\begin{matrix} x\\ y\\ z\\ 1\\ \end{matrix}\right) = \left(\begin{matrix} x + Tx\\ y + Ty\\ z + Tz\\ 1\\ \end{matrix}\right) 100001000010TxTyTz1xyz1=x+Txy+Tyz+Tz1
齐次坐标(Homogeneous Coordinates)

向量的w分量也叫齐次坐标。想要从齐次向量得到3D向量,我们可以把x、y和z坐标分别除以w坐标。我们通常不会注意这个问题,因为w分量通常是1.0。使用齐次坐标有几点好处:它允许我们在3D向量上进行位移(如果没有w分量我们是不能位移向量的),而且下一章我们会用w值创建3D视觉效果。

如果一个向量的齐次坐标是0,这个坐标就是方向向量(Direction Vector),因为w坐标是0,这个向量就不能位移(译注:这也就是我们说的不能位移一个方向)。

旋转

大多数旋转函数需要用弧度制的角:

  • 弧度转角度:角度=弧度×(180.0/π)角度 = 弧度 \times (180.0 / \pi)角度=弧度×(180.0/π)
  • 角度转弧度:弧度=角度×(π/180.0)弧度 = 角度 \times (\pi / 180.0)弧度=角度×(π/180.0)

沿着x轴旋转:
[10000cosθ−sinθ00sinθcosθ00001]⋅(xyz1)=(xcosθ⋅y−sinθ⋅zsinθ⋅y+cosθ⋅z1)\left[\begin{matrix} 1&0&0&0\\ 0&cos\theta&-sin\theta&0\\ 0&sin\theta&cos\theta&0\\ 0&0&0&1\\ \end{matrix}\right] \cdot \left(\begin{matrix} x\\ y\\ z\\ 1\\ \end{matrix}\right) = \left(\begin{matrix} x\\ cos\theta\cdot y - sin\theta\cdot z\\ sin\theta\cdot y + cos\theta\cdot z\\ 1\\ \end{matrix}\right) 10000cosθsinθ00sinθcosθ00001xyz1=xcosθysinθzsinθy+cosθz1
沿着y轴旋转:
[cosθ0sinθ00100−sinθ0cosθ00001]⋅(xyz1)=(cosθ⋅x+sinθ⋅zy−sinθ⋅x+cosθ⋅z1)\left[\begin{matrix} cos\theta&0&sin\theta&0\\ 0&1&0&0\\ -sin\theta&0&cos\theta&0\\ 0&0&0&1\\ \end{matrix}\right] \cdot \left(\begin{matrix} x\\ y\\ z\\ 1\\ \end{matrix}\right) = \left(\begin{matrix} cos\theta\cdot x+ sin\theta\cdot z\\ y \\ -sin\theta\cdot x + cos\theta\cdot z\\ 1\\ \end{matrix}\right) cosθ0sinθ00100sinθ0cosθ00001xyz1=cosθx+sinθzysinθx+cosθz1
沿着z轴旋转:
[cosθ−sinθ00sinθcosθ0000100001]⋅(xyz1)=(cosθ⋅x−sinθ⋅ysinθ⋅x+cosθ⋅yz1)\left[\begin{matrix} cos\theta&-sin\theta&0&0\\ sin\theta&cos\theta&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{matrix}\right] \cdot \left(\begin{matrix} x\\ y\\ z\\ 1\\ \end{matrix}\right) = \left(\begin{matrix} cos\theta\cdot x - sin\theta\cdot y\\ sin\theta\cdot x + cos\theta\cdot y \\ z \\ 1\\ \end{matrix}\right) cosθsinθ00sinθcosθ0000100001xyz1=cosθxsinθysinθx+cosθyz1
矩阵的组合

使用矩阵进行变换的真正力量在于,根据矩阵之间的乘法,我们可以把多个变换组合到一个矩阵中。让我们看看我们是否能生成一个变换矩阵,让它组合多个变换。假设我们有一个顶点(x, y, z),我们希望将其缩放2倍,然后位移(1, 2, 3)个单位。我们需要一个位移和缩放矩阵来完成这些变换。结果的变换矩阵看起来像这样:
[1001010200130001]⋅[2000020000200001]=[2001020200230001]\left[\begin{matrix} 1&0&0&1\\ 0&1&0&2\\ 0&0&1&3\\ 0&0&0&1\\ \end{matrix}\right] \cdot \left[\begin{matrix} 2&0&0&0\\ 0&2&0&0\\ 0&0&2&0\\ 0&0&0&1\\ \end{matrix}\right] = \left[\begin{matrix} 2&0&0&1\\ 0&2&0&2\\ 0&0&2&3\\ 0&0&0&1\\ \end{matrix}\right] 10000100001012312000020000200001=2000020000201231
用最终的变换矩阵左乘我们的向量会得到以下结果:
[2001020200230001]⋅(xyz1)=(2x+12y+22z+31)\left[\begin{matrix} 2&0&0&1\\ 0&2&0&2\\ 0&0&2&3\\ 0&0&0&1\\ \end{matrix}\right] \cdot \left(\begin{matrix} x\\ y\\ z\\ 1\\ \end{matrix}\right) = \left(\begin{matrix} 2x + 1\\ 2y + 2\\ 2z + 3 \\ 1\\ \end{matrix}\right) 2000020000201231xyz1=2x+12y+22z+31

代码实现

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 1) in vec2 aTexCord;
out vec3 ourColor; // 向片段着色器输出一个颜色
out vec2 texCord; // 向片段着色器输出一个颜色
uniform mat4 RotationMatrix;
void main()
{gl_Position = RotationMatrix * vec4(aPos, 1.0);ourColor = aColor; // 将ourColor设置为我们从顶点数据那里得到的输入颜色texCord = aTexCord;
}
QMatrix4x4 matrix;
unsigned int time = QTime::currentTime().msec();
matrix.translate(3,3);
matrix.rotate(time, 0.0f, 0.0f, 1.0f);
...
shader_program_.setUniformValue("RotationMatrix", matrix);

相关文章:

QT+ OpenGL 变换

文章目录QT OpenGL变换向量的运算矩阵矩阵与向量相乘代码实现QT OpenGL 本篇完整工程见gitee:QTOpenGL 对应点的tag,由turbolove提供技术支持,您可以关注博主或者私信博主。 变换 我们需要改变物体的位置 现有解决办法(每一帧&#xff0c…...

【算法】前缀和

作者:指针不指南吗 专栏:算法篇 🐾要学会在纸上打草稿,这个很重要🐾 文章目录1.什么是前缀和?2.怎么求前缀和?3.前缀和有什么用?4.进阶二维:矩阵和前缀和 主打一个记公式 1.什么是前…...

《Redis实战篇》七、Redis消息队列

7.1 Redis消息队列-认识消息队列 什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色: 消息队列:存储和管理消息,也被称为消息代理(Message Broker)生产者:发送消息…...

android组件化

学习流程:1.开源最佳实践:Android平台页面路由框架ARouter-阿里云开发者社区 (aliyun.com)2.中文ARouter使用API:https://github.com/alibaba/ARouter/blob/master/README_CN.md3.看当前文档后面的代码4.这是通俗易懂的文章:https…...

华为OD机试真题Python实现【特异性双端队列】真题+解题思路+代码(20222023)

🔥系列专栏 华为OD机试(Python)真题目录汇总华为OD机试(JAVA)真题目录汇总华为OD机试(C++)真题目录汇总华为OD机试(JavaScript)真题目录汇总文章目录 🔥系列专栏题目输入输出示例一输入输出解题思路核心知识点Python 代码实现代码运行结果版权说明<...

24.架构能力

文章目录24. 架构能力24.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects 个人能力&#xff1a;架构师的职责、技能和知识24.2 Competence of a Software Architecture Organization 软件架构组织的能力24.3 Summary 小结24.4 For Further Reading …...

前端原生 CSS 跑马灯效果,无限轮播(横竖版本,带渐变遮罩,简单实用)

一、横版跑马灯 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-wid…...

4.8 注解与自定义注解

文章目录1.概述2.注解的分类2.1 JDK注解2.2 元注解2.2.1 Target ElementType…2.2.2 Retention RetentionPolicy…3 自定义注解1.概述 在注解刚出现时&#xff0c;曾受到过好多程序员的鄙夷&#xff0c;觉得这就是多此一举的操作&#xff1b; 但随着时间的推移&#xff0c;越…...

webpack 的热更新是如何做到的?原理是什么?

Hot Module Replacement&#xff0c;简称 HMR&#xff0c;在不需要刷新整个页面的同时更新模块&#xff0c;能够提升开发的效率和体验。热更新时只会局部刷新页面上发生了变化的模块&#xff0c;同时可以保留当前页面的状态&#xff0c;比如复选框的选中状态等。 在 webpack 中…...

嵌入式ARM设计编程(一) 简单数据搬移

文章和代码已归档至【Github仓库&#xff1a;hardware-tutorial】&#xff0c;需要的朋友们自取。或者公众号【AIShareLab】回复 嵌入式 也可获取。 一、实验目的 熟悉实验开发环境&#xff0c;掌握简单ARM汇编指令的使用方法。 二、实验环境 硬件&#xff1a;PC机 软件&am…...

【Selenium】十分钟手把手带你学会WebDriver API

目录 1、定位元素【8种】 2、操作测试对象 3、添加等待 4、弹窗类型 5、浏览器的操作 6、键盘事件 7、选择框 8、上传文件 1、定位元素【8种】 元素定位是自动化测试的核心&#xff0c;想要去操作一个对象&#xff0c;第一步就是需要我们先去识别这个对象。每个对象就会…...

3DMAX高级弯曲插件使用教程

3dMax高级弯曲插件是对3dmax原生“弯曲&#xff08;Bend&#xff09;”修改器的一个增强&#xff0c;给用户更多控制弯曲修改器的参数设置&#xff0c;它让用户输入宽度&#xff0c;插件脚本将移动中心以获得正确的宽度。 主要特性&#xff1a; - 使用智能捕捉捕捉到自定义网格…...

前端面试题之性能优化大杂烩

主要内容为下面几大类&#xff1a;移动端、图片、JavaScript、css、html、页面内容、服务器、cookie。 移动端性能优化&#xff1a; 保持单个文件小于25KB 移动网站页面要求下载资源&#xff0c;如果文件过大&#xff0c;会大大减慢页面加载速度。 打包内容为分段multipart文…...

SpringBoot+Vue实现养老智慧服务平台

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7/8.0 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.3.9 浏…...

tigervnc2023

sudo apt-get install tigervnc-standalone-server 配置用户 /etc/tigervnc/vncserver.users :1user1 :2user2 :3user3 全局配置 /etc/tigervnc/vncserver-config-defaults $localhost"no"; $geometry "1920x1200"; 分别进入user1 user2 user3 用户…...

智能三子棋(人机大战)—— 你会是最终赢家吗?万字讲解让你实现与自己对弈

魔王的介绍&#xff1a;&#x1f636;‍&#x1f32b;️一名双非本科大一小白。魔王的目标&#xff1a;&#x1f92f;努力赶上周围卷王的脚步。魔王的主页&#xff1a;&#x1f525;&#x1f525;&#x1f525;大魔王.&#x1f525;&#x1f525;&#x1f525; ❤️‍&#x1…...

【自制开发板】自制STM32F407开发板(含TFT 8080串口屏幕接口)

【2023 年 2 月 14 日】 许久没有更新&#xff0c;最近做了个小开发板玩了玩。更新一下吧&#xff0c;作为记录&#xff01;&#xff01; 主要是象试一下LVGL在STM32上的应用&#xff0c;所以开发板的大小都是基于屏幕大小来设计的。 分享出来&#xff0c;给大家一个板子结构…...

openvino yolov5/ssd 实时推流目标检测在html上显示

安装ffmepg并添加到环境变量中&#xff0c;流媒体使用m7s 运行效果 SSD&#xff1a;检测在10ms左右&#xff0c;yolov5在100ms左右 app.py #!/usr/local/bin/python3 # encodin: utf-8import subprocess import threading import time import cv2 import osfrom OpenVinoYoloV…...

基于FPGA的 SPI通信 设计(1)

引言 低速通信目前搞过 UART串口通信、IIC通信。其实 SPI 也算是中低速&#xff08;有时也可以用作高速通信&#xff09;串行通信的范畴&#xff0c;但是一直还没真正实现过&#xff0c;所以此系列就 SPI的协议以及FPGA设计作几篇博客记录。欢迎订阅关注~ SPI 标准协议 x1模式…...

为什么西门子、美的等企业这样进行架构升级,看看改造效果就知道了

在工业领域&#xff0c; 生产、测试、运行阶段都可能会产生大量带有时间戳的传感器数据&#xff0c;这都属于典型的时序数据。时序数据主要由各类型实时监测、检查与分析设备所采集或产生&#xff0c;涉及制造、电力、化工、工程作业等多个行业&#xff0c;具备写多读少、量非常…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...