当前位置: 首页 > news >正文

【Tensorflow】模型如何加载HDF文件数据集?

如果每个样本都被保存为一个单独的 HDF5 文件,可以使用 `tf.data.Dataset.list_files` 函数来创建一个文件名数据集,然后使用 `tf.data.Dataset.interleave` 函数来并行读取多个文件。

下面的示例展示了如何从多个 HDF5 文件中读取数据并创建一个 `tf.data.Dataset` 对象:
import h5py
import tensorflow as tf

# 定义文件模式,假设三个数据集都在/dataset文件夹中
train_pattern = "/dataset/train/*.h5"
val_pattern = "/dataset/val/*.h5"
test_pattern = "/dataset/test/*.h5"

# 定义读取函数
def read_file(file):
    with h5py.File(file.numpy(), "r") as f:
        x = f["x"][()]
        y = f["y"][()]
    return x, y

def load_data(file):
    x, y = tf.py_function(read_file, [file], [tf.float32, tf.float32])
    return x, y

# 创建文件名数据集
train_files = tf.data.Dataset.list_files(train_pattern)
val_files = tf.data.Dataset.list_files(val_pattern)
test_files = tf.data.Dataset.list_files(test_pattern)

# 读取数据
train_dataset = train_files.interleave(
    load_data,
    cycle_length=tf.data.AUTOTUNE,
    num_parallel_calls=tf.data.AUTOTUNE
)

val_dataset = val_files.interleave(
    load_data,
    cycle_length=tf.data.AUTOTUNE,
    num_parallel_calls=tf.data.AUTOTUNE
)

test_dataset = test_files.interleave(
    load_data,
    cycle_length=tf.data.AUTOTUNE,
    num_parallel_calls=tf.data.AUTOTUNE
)

# 打乱和批处理数据
train_dataset = train_dataset.shuffle(buffer_size=10000).batch(batch_size)
val_dataset = val_dataset.batch(batch_size)
test_dataset = test_dataset.batch(batch_size)

`interleave` 函数可以从多个数据集中交替地读取数据。在这个例子中,我们使用 `interleave` 函数来并行地从多个 HDF5 文件中读取数据。

`interleave` 函数的第一个参数是一个函数,它接受一个输入元素(在这个例子中是一个文件名),并返回一个新的 `Dataset` 对象。在这个例子中,我们定义了一个 `load_data` 函数,它接受一个文件名作为输入,然后使用 `h5py` 库来读取 HDF5 文件中的数据,并返回一个包含数据的 `Dataset` 对象。

`interleave` 函数的第二个参数 `cycle_length` 指定了同时打开的文件数。在这个例子中,我们将其设置为 `tf.data.AUTOTUNE`,这意味着 TensorFlow 会自动选择最佳的值。

`interleave` 函数的第三个参数 `num_parallel_calls` 指定了并行读取文件时使用的线程数。在这个例子中,我们将其设置为 `tf.data.AUTOTUNE`,这意味着 TensorFlow 会自动选择最佳的值。

shuffle 方法用于打乱数据集中的元素顺序。它接受一个参数 buffer_size,用于指定打乱顺序时使用的缓冲区大小。在这个例子中,我们将其设置为 10000,这意味着 TensorFlow 会在一个大小为 10000 的缓冲区中随机选择元素。

batch 方法用于将数据集中的元素分组成批。它接受一个参数 batch_size,用于指定每个批次中元素的数量。在这个例子中,我们使用了之前定义的变量 batch_size 来设置每个批次中元素的数量。


如何在创建模型的时候调参?

当你刚创建了模型还不确定超参数用什么好,如果您想使用贝叶斯优化来调整超参数,可以使用像 `scikit-optimize` 这样的库来实现。首先,安装 `scikit-optimize` 库, `pip install scikit-optimize` 。

下面是一个示例,展示了如何使用 `scikit-optimize` 库中的 `gp_minimize` 函数来调整学习率和批处理大小:
from skopt import gp_minimize
from skopt.space import Real, Integer
from skopt.utils import use_named_args

# 定义超参数空间
space = [
    Real(1e-6, 1e-2, name='learning_rate', prior='log-uniform'),
    Integer(8, 32,64,128, name='batch_size')
]

# 定义目标函数
@use_named_args(space)
def objective(learning_rate, batch_size):
    # 模型
    model = tf.keras.Sequential()
    model.add(layers.Conv3D(32, kernel_size=(3, 3, 3), activation='relu', input_shape=(21, 21, 21, 20)))
    model.add(layers.Conv3D(64, kernel_size=(3, 3, 3), activation='relu'))
    model.add(layers.Conv3D(128, kernel_size=(3, 3, 3), activation='relu'))
    model.add(layers.Flatten())
    model.add(layers.Dense(1))

    # 编译模型
    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
    model.compile(loss='mean_squared_error', optimizer=optimizer)

    # 训练模型
    history = model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=epochs,
        verbose=0,
        validation_data=(x_test, y_test)
    )

    # 返回验证损失
    return history.history['val_loss'][-1]

# 运行贝叶斯优化
res = gp_minimize(objective, space, n_calls=50)

# 输出最优超参数
print(f"Best parameters: {res.x}")
 

您可以根据您的需求进行相应的修改。

        在上面的示例中,我们定义了一个目标函数 objective,它接受两个命名参数 learning_rate 和 batch_size

        然而,gp_minimize 函数期望目标函数接受一个位置参数,该参数是一个列表,包含所有超参数的值。

        为解决这个问题,我们使用了 @use_named_args 装饰器。它接受一个参数 space,用于指定超参数空间。在这个例子中,我们将其设置为之前定义的超参数空间列表。

当使用 @use_named_args(space) 装饰目标函数时,它会自动将目标函数的参数从位置参数转换为命名参数。这样,就可以在目标函数中使用命名参数,而不必手动解包位置参数。

在 Python 中,函数参数分为两种类型:位置参数和命名参数。

位置参数是按照顺序传递给函数的参数。例如,在下面的函数定义中,`x` 和 `y` 都是位置参数:
def add(x, y):
    return x + y

当调用这个函数时,需要按照顺序传递两个参数,例如 `add(1, 2)`。`1` 会被赋值给 `x`,`2` 会被赋值给 `y`。

命名参数是通过名称传递的参数。例如,在下面的函数定义中,`x` 和 `y` 都是命名参数:
def add(x=0, y=0):
    return x + y

当我们调用这个函数时,我们可以使用名称来指定参数的值,例如 `add(x=1, y=2)`。在这个例子中,`1` 会被赋值给 `x`,`2` 会被赋值给 `y`。

相关文章:

【Tensorflow】模型如何加载HDF文件数据集?

如果每个样本都被保存为一个单独的 HDF5 文件,可以使用 tf.data.Dataset.list_files 函数来创建一个文件名数据集,然后使用 tf.data.Dataset.interleave 函数来并行读取多个文件。 下面的示例展示了如何从多个 HDF5 文件中读取数据并创建一个 tf.data.D…...

校招又临近了,怎么在面试中应对设计模式相关问题呢?

夏天开始了,那么夏天结束时的毕业季也不远了。毕业是个伤感、期待而又略带残酷的时节,就像蜜桃无论成熟与否都会在这个时间被采摘,如果毫无准备就踏入社会,就会……马上变成低级社畜。所以说还是要早点为了毕业找工作做点准备&…...

padans关于数据处理的杂谈

情况:业务数据基本字段会有如下: Index([时间, 地区, 产品, 字段, 数值], dtypeobject)这样就会引发一个经典“三角不可能定理”,如何同时简约展现分时序、分产品、分字段数据。)一般来说, 1、时序为作为单独的分类&…...

神经网络的理解

文章目录 概念得分函数损失函数神经网络结构非线性激活函数神经网络运行过程神经网络能够做的事情概念 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并…...

夏驰和徐策带你从零开始学数据结构——哈希表

哈希表的概念: 哈希表是一种常用的数据结构,它可以在 O(1) 的时间复杂度内执行插入、查找和删除操作。哈希表的核心思想是使用哈希函数将键值对映射到数组中的一个位置上,从而实现快速的访问和修改。 哈希表由两个主要部分组成:…...

linux实现网络程序

1️⃣ 在linux下,通过套接字实现服务器和客户端的通信。 2️⃣ 实现单线程、多线程通信。或者实现线程池来通信。 3️⃣ 优化通信,增加守护进程。 有情提醒,类里面默认的函数是内联。内联函数在调用的地方展开,没有函数地址&…...

FreeRTOS 队列(二)

文章目录 一、向队列发送消息1. 函数原型(1)函数 xQueueOverwrite()(2)函数 xQueueGenericSend()(3)函数 xQueueSendFromISR()、xQueueSendToBackFromISR()、xQueueSendToFrontFromISR()(4&…...

用python获取当前目录下的创建时间超过3天的所有python文件

直接上代码: import os import datetime print(os.getcwd()) # 获取当前目录下所有的html文件 html_files [] for filename in os.listdir(): if filename.endswith(.py): html_files.append(os.path.join(., filename)) now date…...

第五章 Linux实际操作——用户管理

第五章 Linux实际操作——用户管理 5.1 基本介绍5.2 添加用户5.3 指定、修改密码5.4 删除用户5.5 查询用户信息指令5.6 切换用户5.7 查看当前用户、登录用户5.8 用户组5.9 用户和组相关文件8.9.1/etc/passwd 文件8.9.2/etc/shadow文件8.9.3/etc/group文件 5.1 基本介绍 Linux系…...

悲观锁和乐观锁详细

悲观锁和乐观锁详细 悲观锁 ​ 悲观锁就是悲观的思想,他认为数据每一次被访问的时候都会被上锁,所以每次获得锁的时候都会上锁,这样其他线程想要获取这个锁的时候就会被堵塞,要等待上一个线程锁的释放。也就是说这个线程只一次只…...

三谈ChatGPT(ChatGPT可以解决问题的90%)

这是我第三次谈ChatGPT,前两篇主要谈了ChatGPT的概念,之所以火的原因和对人们的影响,以及ChatGPT可能存在的安全风险和将面临的监管问题。这一篇主要讲讲ChatGPT的场景和处理问题的逻辑。 这一次我特意使用了ChatGPT中文网页版体验了一番。并…...

Qt QSet 详解:从底层原理到高级用法

目录标题 引言:QSet的重要性与简介QSet 的常用接口迭代器:遍历Qset 中的元素(Iterators: Traversing Elements in Qset )高级用法:QSet 中的算法与功能(Advanced Usage: Algorithms and Functions in QList…...

Mac Doxygen的使用

Doxygen的使用 安装着Doxygen和Graphviz这两个东西 在源码目录先使用doxygen -g生成一个叫 ‘Doxyfile’ 的Doxygen的配置文件修改配置文件,里面都有介绍各个选项的功能,这里主要修改一下几个: HAVE_DOT YES EXTRACT_ALL YES EXTRACT_PRIVATE YES E…...

FPGA基础代码复用

一、verilog中有关代码复用的语法 1、连接符“{}” {4{1b1}} 或者 {5d6, 5d8} 2、参数(Parameter)型常量定义 parameter 参数名=表达式; 或者 localparam 参数名=表达式; parameter DATA_WIDTH 20; 3、function函数定义 …...

Hbase简介

HBase简介 一、HBase简介 1. HBase简介 (1) apache的顶级项目,hadoop的数据库,分布式、大规模的大数据存储。 HBase是Google的BigTable的开源java版本,建立在hdfs之上的,分布式、列存储、非关系(nosql、key-value&a…...

科海思除COD树脂,大孔树脂,除COD专用树脂

一、产品介绍 Tulsimer A-722 MP具有控制孔径的大孔强碱性Ⅰ型阴离子交换树脂 Tulsimer A-722 MP 是一款具有便于颜色和有机物去除的控制孔径的,专门开发的大孔强碱性Ⅰ型阴离子交换树脂。 Tulsimer A-722 MP(氯型)专门应用于去除COD…...

Qt 多线程 QThread、QThreadPool使用场景

QThread 和 QRunnable 都是 Qt 框架中用于多线程编程的类,它们之间有以下不同点: 继承关系不同 QThread 继承自 QObject 类,而 QRunnable 没有父类。 实现方式不同 QThread 是一个完整的线程实现,包含了线程的创建、启动、停止、…...

如何一招搞定PCB阻焊过孔问题?

PCB阻焊油墨根据固化方式,阻焊油墨有感光显影型的油墨,有热固化的热固油墨,还有UV光固化的UV油墨。而根据板材分类,又有PCB硬板阻焊油墨,FPC软板阻焊油墨,还有铝基板阻焊油墨,铝基板油墨也可以用…...

【代码随想录】刷题Day2

1.左右指针比大小 977. 有序数组的平方 class Solution { public:vector<int> sortedSquares(vector<int>& nums) {vector<int> ret nums;int left 0;int right nums.size()-1;int end nums.size();while(left<right){if(abs(nums[left])>abs…...

Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用

Python是功能强大、免费、开源&#xff0c;实现面向对象的编程语言&#xff0c;在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能&#xff0c;这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...