当前位置: 首页 > news >正文

Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用

Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为的主流编程语言之一。 人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python也是当前进行机器学习和深度学习应用的最热门语言。对于的气象海洋领域的专业人员,Python是进行机器学习和深度学习工作的首选。

专题一

Python软件的安装及入门

1.1 Python背景及其在气象中的应用

1.2 Anaconda解释和安装以及Jupyter配置

1.3 Python基础语法

专题二

气象常用科学计算库

2.1 Numpy库

2.2 Pandas库

2.4 Xarray库

专题三

气象海洋常用可视化库

3.1可视化库介绍Matplotlib、Cartopy等

3.2 基础绘图

(1)折线图绘制

(2)散点图绘制

(3)填色/等值线

(4)流场矢量图

专题四

爬虫和气象海洋数据

(1)Request库的介绍

(2)爬取中央气象台天气图

(3)FNL资料爬取

(4) ERA5下载

专题五

气象海洋常用插值方法

(1)规则网格数据插值到站点

(2)径向基函数RBF插值

(3)反距离权重IDW插值

(4)克里金Kriging插值

专题六

机器学习基础理论和实操

6.1 机器学习基础原理

(1)机器学习概论

(2)集成学习(Bagging和Boosting)

(3)常用模型原理(随机森林、Adaboost、GBDT、Xgboost、lightGBM)

6.2 机器学习库scikit-learn

(1)sklearn的简介

(2)sklearn完成分类任务

(3)sklearn完成回归任务

专题七

机器学习的应用实例

本专题,在详细讲解机器学习常用的两类集成学习算法,Bagging和Boosting,对两类算法及其常用代表模型深入讲解的基础上,结合三个学习个例,并串讲一些机器学习常用技巧,将理论与实践结合。

7.1机器学习与深度学习在气象中的应用

AI在气象模式订正、短临预报、气候预测等场景的应用

7.2 GFS数值模式的风速预报订正

(1)随机森林挑选重要特征

(2)K近邻和决策树模型订正风速

(3)梯度提升决策树GBDT订正风速

(4)模型评估与对比

7.3 台风预报数据智能订正

(1)CMA台风预报数据集介绍以及预处理

(2)随机森林模型订正台风预报

(3)XGBoost模型订正台风预报

(4)台风“烟花”预报效果检验

7.4 机器学习预测风电场的风功率

(1)lightGBM模型预测风功率

(2)调参利器—网格搜索GridSearch于K折验证

专题八

深度学习基础理论和实操

8.1 深度学习基本理论

深度学习基本理论知识讲解,深入了解机器学习的基础理论和工作原理,掌握如何构建和优化神经网络模型(如人工神经网络ANN,卷积神经网络CNN、循环神经网络RNN等),提高对现有深度学习算法和技术的理解和应用能力,更好地应对后续海洋气象相关领域的实际问题和应用。

8.2 Pytorch库

(1)sklearn介绍、常用功能和机器学习方法

学习经典机器学习库sklearn的常用功能,如鸢尾花、手写字体等公开数据集的获取、划分训练集和测试集、模型搭建和模型验证等。

(2) pytorch介绍、搭建 模型

学习目前流行的深度学习框架pytorch,了解张量tensor、自动求导、梯度提升等,以BP神经网络学习sin函数为例,掌握如何搭建单层和多层神经网络,以及如何使用GPU进行模型运算。

专题九

深度学习的应用实例

本专题,在学习使用ANN预测浅水方程的基础上,进一步掌握如何使用PINN方法,将动力方程加入模型中,缓解深度学习的物理解释性差的问题。此外,气象数据是典型的时空数据,学习经典的时序预测方法LSTM,以及空间卷积算法UNET。

9.1深度学习预测浅水方程模式

(1)浅水模型介绍和数据获取

(2) 传统神经网络ANN学习浅水方程

(3)物理约束网络PINN学习浅水方程

9.2 LSTM方法预测ENSO

(4)ENSO简介及数据介绍

(5)LSTM方法原理介绍

(6)LSTM方法预测气象序列数据

9.3深度学习—卷积网络

(1)卷积神经网络介绍

(2)Unet进行雷达回波的预测

专题十

EOF统计分析

10.1 EOF基础和eofs库的介绍

10.2 EOF分析海表面温度数据

(1)SST数据计算距平,去趋势

(2)SST进行EOF分析,可视化

专题十一

模式后处理

11.1 WRF模式后处理

(1)wrf-python库介绍

(2)提取站点数据

(3)500hPa形式场绘制

(4)垂直剖面图——雷达反射率为例

11.2 ROMS模式后处理

(1)xarray为例操作ROMS输出数据

(2)垂直坐标转换,S坐标转深度坐标

(3)垂直剖面绘制

(4)水平填色图绘制

原文阅读:Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用

相关文章:

Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用

Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以…...

计及调度经济性的光热电站储热容量配置方法【IEEE30节点】(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥 🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 …...

“不要放过这个春天”解锁品牌春日宣传新玩法

在万物复苏的春天,人们换新装、踏青等需求蓄势待发,出现了全民消费热情高涨的趋势,让品牌「贩卖春天」的宣传此起彼伏。 品牌洞察到用户的消费需求,打造具有品牌特色的浪漫宣传,如采用春日限定元素、创新春天宣传场景…...

利用GPT2 预测 福彩3d预测

使用GPT2预测福彩3D项目 个人总结彩票数据是随机的,可以预测到1-2个数字,但是有一两位总是随机的 该项目紧做模型学习用,通过该项目熟练模型训练调用生成过程. 福彩3D数据下载 https://www.17500.cn/getData/3d.TXT data数据格式 处理后数据格式 每行 2023 03 08 9 7 3 训…...

类加载过程

基本说明 反射机制是Java实现动态语言的关键,也就是通过反射实现类动态加载。 静态加载:编译时加载相关的类,如果没有则报错,依赖性太强动态加载:运行时加载需要的类,如果运行时不用该类,即使…...

【C/C++】C++11 无序关联容器的诞生背景

文章目录 背景无序关联容器适用场景有序关联容器适用场景 背景 C11 引入了无序关联容器(unordered_map、unordered_set、unordered_multimap 和 unordered_multiset)是为了提供一种高效的元素存储和查找方式。相比于有序关联容器(map、set、…...

h264编码原理

在介绍编码器原理之前首先了解三个制定编码标准的组织: 1.国际电信联盟(ITU-T),这是一个音视频领域非常强的组织,规定了很多标准如h261,h262,h263,h263。h263也就是h264的前身。 2.国际标准化组织(ISO)&…...

网络工程师经常搞混的路由策略和策略路由,两者到底有啥区别?

当涉及到网络路由时,两个术语经常被混淆:策略路由和路由策略。虽然这些术语听起来很相似,但它们实际上有着不同的含义和用途。在本文中,我们将详细介绍这两个术语的区别和应用。 一、路由策略 路由策略是指一组规则,用…...

高精度气象模拟软件WRF实践技术

【原文链接】:高精度气象模拟软件WRF(Weather Research Forecasting)实践技术及案例应用https://mp.weixin.qq.com/s?__bizMzU5NTkyMzcxNw&mid2247538149&idx3&sn3890c3b29f34bcb07678a9dd4b9947b2&chksmfe68938fc91f1a99bbced2113b09cad822711e7f…...

总结827

学习目标: 4月(复习完高数18讲内容,背诵21篇短文,熟词僻义300词基础词) 学习内容: 高等数学:刷1800,做了26道计算题,记录两道错题,搞懂了,但并不…...

还在发愁项目去哪找?软件测试企业级Web自动化测试实战项目

今天给大家分享一个简单易操作的实战项目(已开源) 项目名称 ET开源商场系统 项目描述 ETshop是一个电子商务B2C电商平台系统,功能强大,安全便捷。适合企业及个人快速构建个性化网上商城。 包含PCIOS客户端Adroid客户端微商城…...

总结下Spring boot异步执行逻辑的几种方式

文章目录 概念实现方式Thread说明 Async注解说明 线程池CompletableFuture(Future及FutureTask)创建CompletableFuture异步执行 消息队列 概念 异步执行模式:是指语句在异步执行模式下,各语句执行结束的顺序与语句执行开始的顺序…...

【开发日志】2023.04 ZENO----Composite----CompNormalMap

NormalMap-Online (cpetry.github.io)https://cpetry.github.io/NormalMap-Online/ CompNormalMap 将灰度图像转换为法线贴图 将灰度图像转换为法线贴图是一种常见的技术,用于在实时图形渲染中增加表面细节。下面是一个简单的方法来将灰度图像转换为法线贴图&…...

春秋云境:CVE-2022-28525 (文件上传漏洞)

目录 一、题目 1.登录 2.burp抓包改包 3.蚁剑获取flag 一、题目 ED01CMSv20180505存在任意文件上传漏洞 英语不够 翻译来凑: 点击其他页面会Not Found 找不到: 先登录看看吧: 试试万能密码:admin:123 发现错误…...

【软件测试二】开发模型和测试模型,BUG概念篇

目录 1.软件的生命周期 2.瀑布模型 3.螺旋模型 4.增量,迭代 5.敏捷---scrum 1. 敏捷宣言 2.角色 6. 软件测试v模型 7.软件测试w模型 8.软件测试的生命周期 9.如何描述一个BUG 10.如何定义BUG的级别 11.BUG的生命周期 12.产生争执怎么办 1.软件的生命周期…...

短视频app开发:如何实现视频直播功能

短视频源码的实现 在短视频app开发中,实现视频直播功能需要借助短视频源码。短视频源码可以提供一个完整的视频直播功能模块,包括视频采集、编码、推流等。因此,我们可以选择一些开源的短视频源码,例如LFLiveKit、ijkplayer等&am…...

[架构之路-174]-《软考-系统分析师》-5-数据库系统-7-数据仓库技术与数据挖掘技术

5 . 7 数据仓库技术 数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。近年来,人们对数据仓库技术的关注程度越来越尚,其原因是过去的几十年中,建设了无数的应用系统,积累了…...

销售高品质 FKM EPDM NBR 硅胶 O 形密封圈

O形圈常用于各种行业,包括汽车、航空航天和制造业。它们是由不同材料制成的圆环,用于将两个或多个组件密封在一起。用于制造O形圈的材料是决定其有效性和耐用性的重要因素。在本文中,我们将讨论用于制作O形圈的不同类型的材料。 1.丁腈橡胶(…...

Linux环境变量:不可或缺的系统组成部分

目录标题 引言(Introduction)Linux环境变量的概念(Concept of Linux Environment Variables)环境变量的作用与重要性(Roles and Importance of Environment Variables) Linux环境变量基础(Linux…...

FFmpeg命令行解析

目录标题 一、引言(Introduction)1.1 FFmpeg简介(Overview of FFmpeg)1.2 FFmpeg命令行的应用场景(Application Scenarios of FFmpeg Command Line) 二、FFmpeg命令行基础(FFmpeg Command Line …...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

【HTTP三个基础问题】

面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生,系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler,它是Thread的子类(就是package java.lang;里线程的Thread)。本文将利用它将设备信息、报错信息以及错误的发生时间都…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...