当前位置: 首页 > news >正文

RabbitMQ-高级篇

服务异步通信-高级篇

消息队列在使用过程中,面临着很多实际问题需要思考:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D6S1iAs7-1681919354777)(assets/image-20210718155003157.png)]

1.消息可靠性

消息从发送,到消费者接收,会经理多个过程:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tDZR66Ly-1681919354779)(assets/image-20210718155059371.png)]

其中的每一步都可能导致消息丢失,常见的丢失原因包括:

  • 发送时丢失:
    • 生产者发送的消息未送达exchange
    • 消息到达exchange后未到达queue
  • MQ宕机,queue将消息丢失
  • consumer接收到消息后未消费就宕机

针对这些问题,RabbitMQ分别给出了解决方案:

  • 生产者确认机制
  • mq持久化
  • 消费者确认机制
  • 失败重试机制

下面我们就通过案例来演示每一个步骤。

首先,导入课前资料提供的demo工程:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-l8xmJB9z-1681919354780)(assets/image-20210718155328927.png)]

项目结构如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wd5nQL8S-1681919354781)(assets/image-20210718155448734.png)]

1.1.生产者消息确认

RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。这种机制必须给每个消息指定一个唯一ID。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。

返回结果有两种方式:

  • publisher-confirm,发送者确认
    • 消息成功投递到交换机,返回ack
    • 消息未投递到交换机,返回nack
  • publisher-return,发送者回执
    • 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PGKC99oP-1681919354782)(assets/image-20210718160907166.png)]

注意:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Zy2RozJc-1681919354783)(assets/image-20210718161707992.png)]

1.1.1.修改配置

首先,修改publisher服务中的application.yml文件,添加下面的内容:

spring:rabbitmq:publisher-confirm-type: correlatedpublisher-returns: truetemplate:mandatory: true

说明:

  • publish-confirm-type:开启publisher-confirm,这里支持两种类型:
    • simple:同步等待confirm结果,直到超时
    • correlated:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
  • publish-returns:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallback
  • template.mandatory:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息

1.1.2.定义Return回调

每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:

修改publisher服务,添加一个:

package cn.itcast.mq.config;import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.Configuration;@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {// 获取RabbitTemplateRabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);// 设置ReturnCallbackrabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {// 投递失败,记录日志log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",replyCode, replyText, exchange, routingKey, message.toString());// 如果有业务需要,可以重发消息});}
}

1.1.3.定义ConfirmCallback

ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。

在publisher服务的cn.itcast.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:

public void testSendMessage2SimpleQueue() throws InterruptedException {// 1.消息体String message = "hello, spring amqp!";// 2.全局唯一的消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 3.添加callbackcorrelationData.getFuture().addCallback(result -> {if(result.isAck()){// 3.1.ack,消息成功log.debug("消息发送成功, ID:{}", correlationData.getId());}else{// 3.2.nack,消息失败log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), result.getReason());}},ex -> log.error("消息发送异常, ID:{}, 原因{}",correlationData.getId(),ex.getMessage()));// 4.发送消息rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);// 休眠一会儿,等待ack回执Thread.sleep(2000);
}

1.2.消息持久化

生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失。

要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制。

  • 交换机持久化
  • 队列持久化
  • 消息持久化

1.2.1.交换机持久化

RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public DirectExchange simpleExchange(){// 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除return new DirectExchange("simple.direct", true, false);
}

事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的。

可以在RabbitMQ控制台看到持久化的交换机都会带上D的标示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fT98aMD4-1681919354785)(assets/image-20210718164412450.png)]

1.2.2.队列持久化

RabbitMQ中队列默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public Queue simpleQueue(){// 使用QueueBuilder构建队列,durable就是持久化的return QueueBuilder.durable("simple.queue").build();
}

事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。

可以在RabbitMQ控制台看到持久化的队列都会带上D的标示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IBpM9xLo-1681919354787)(assets/image-20210718164729543.png)]

1.2.3.消息持久化

利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:

  • 1:非持久化
  • 2:持久化

用java代码指定:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RZUoQLqA-1681919354788)(assets/image-20210718165100016.png)]

默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。

1.3.消费者消息确认

RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除。

而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。

设想这样的场景:

  • 1)RabbitMQ投递消息给消费者
  • 2)消费者获取消息后,返回ACK给RabbitMQ
  • 3)RabbitMQ删除消息
  • 4)消费者宕机,消息尚未处理

这样,消息就丢失了。因此消费者返回ACK的时机非常重要。

而SpringAMQP则允许配置三种确认模式:

•manual:手动ack,需要在业务代码结束后,调用api发送ack。

•auto:自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack;抛出异常则返回nack

•none:关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除

由此可知:

  • none模式下,消息投递是不可靠的,可能丢失
  • auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack
  • manual:自己根据业务情况,判断什么时候该ack

一般,我们都是使用默认的auto即可。

1.3.1.演示none模式

修改consumer服务的application.yml文件,添加下面内容:

spring:rabbitmq:listener:simple:acknowledge-mode: none # 关闭ack

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue(String msg) {log.info("消费者接收到simple.queue的消息:【{}】", msg);// 模拟异常System.out.println(1 / 0);log.debug("消息处理完成!");
}

测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。

1.3.2.演示auto模式

再次把确认机制修改为auto:

spring:rabbitmq:listener:simple:acknowledge-mode: auto # 关闭ack

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Dg8Manz5-1681919354789)(assets/image-20210718171705383.png)]

抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ATQ4l8Q6-1681919354791)(assets/image-20210718171759179.png)]

1.4.消费失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VytGsVWm-1681919354792)(assets/image-20210718172746378.png)]

怎么办呢?

1.4.1.本地重试

我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000 # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

  • 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
  • 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
  • 重试达到最大次数后,Spring会返回ack,消息会被丢弃

1.4.2.失败策略

在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。

在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:

  • RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式

  • ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队

  • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列

@Bean
public DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}

2)定义一个RepublishMessageRecoverer,关联队列和交换机

@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}

完整代码:

package cn.itcast.mq.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;@Configuration
public class ErrorMessageConfig {@Beanpublic DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");}@Beanpublic Queue errorQueue(){return new Queue("error.queue", true);}@Beanpublic Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");}@Beanpublic MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");}
}

1.5.总结

如何确保RabbitMQ消息的可靠性?

  • 开启生产者确认机制,确保生产者的消息能到达队列
  • 开启持久化功能,确保消息未消费前在队列中不会丢失
  • 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack
  • 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理

2.死信交换机

2.1.初识死信交换机

2.1.1.什么是死信交换机

什么是死信?

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息满了,无法投递

如果这个包含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)。

如图,一个消息被消费者拒绝了,变成了死信:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fibGVAMp-1681919354793)(assets/image-20210718174328383.png)]

因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9UB7XtuZ-1681919354794)(assets/image-20210718174416160.png)]

如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lBgybZNE-1681919354795)(assets/image-20210718174506856.png)]

另外,队列将死信投递给死信交换机时,必须知道两个信息:

  • 死信交换机名称
  • 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qI8aybdx-1681919354797)(assets/image-20210821073801398.png)]

2.1.2.利用死信交换机接收死信(拓展)

在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。

我们可以给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rUI20qmg-1681919354798)(assets/image-20210718174506856.png)]

我们在consumer服务中,定义一组死信交换机、死信队列:

// 声明普通的 simple.queue队列,并且为其指定死信交换机:dl.direct
@Bean
public Queue simpleQueue2(){return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化.deadLetterExchange("dl.direct") // 指定死信交换机.build();
}
// 声明死信交换机 dl.direct
@Bean
public DirectExchange dlExchange(){return new DirectExchange("dl.direct", true, false);
}
// 声明存储死信的队列 dl.queue
@Bean
public Queue dlQueue(){return new Queue("dl.queue", true);
}
// 将死信队列 与 死信交换机绑定
@Bean
public Binding dlBinding(){return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("simple");
}

2.1.3.总结

什么样的消息会成为死信?

  • 消息被消费者reject或者返回nack
  • 消息超时未消费
  • 队列满了

死信交换机的使用场景是什么?

  • 如果队列绑定了死信交换机,死信会投递到死信交换机;
  • 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。

2.2.TTL

一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:

  • 消息所在的队列设置了超时时间
  • 消息本身设置了超时时间

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iMmfRyTq-1681919354799)(assets/image-20210718182643311.png)]

2.2.1.接收超时死信的死信交换机

在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "dl.ttl.queue", durable = "true"),exchange = @Exchange(name = "dl.ttl.direct"),key = "ttl"
))
public void listenDlQueue(String msg){log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);
}

2.2.2.声明一个队列,并且指定TTL

要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:

@Bean
public Queue ttlQueue(){return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化.ttl(10000) // 设置队列的超时时间,10秒.deadLetterExchange("dl.ttl.direct") // 指定死信交换机.build();
}

注意,这个队列设定了死信交换机为dl.ttl.direct

声明交换机,将ttl与交换机绑定:

@Bean
public DirectExchange ttlExchange(){return new DirectExchange("ttl.direct");
}
@Bean
public Binding ttlBinding(){return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");
}

发送消息,但是不要指定TTL:

@Test
public void testTTLQueue() {// 创建消息String message = "hello, ttl queue";// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);// 记录日志log.debug("发送消息成功");
}

发送消息的日志:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3Ipet5H9-1681919354800)(assets/image-20210718191657478.png)]

查看下接收消息的日志:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BcgpYMwg-1681919354801)(assets/image-20210718191738706.png)]

因为队列的TTL值是10000ms,也就是10秒。可以看到消息发送与接收之间的时差刚好是10秒。

2.2.3.发送消息时,设定TTL

在发送消息时,也可以指定TTL:

@Test
public void testTTLMsg() {// 创建消息Message message = MessageBuilder.withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8)).setExpiration("5000").build();// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);log.debug("发送消息成功");
}

查看发送消息日志:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GspTP3KO-1681919354802)(assets/image-20210718191939140.png)]

接收消息日志:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UNieUmkW-1681919354803)(assets/image-20210718192004662.png)]

这次,发送与接收的延迟只有5秒。说明当队列、消息都设置了TTL时,任意一个到期就会成为死信。

2.2.4.总结

消息超时的两种方式是?

  • 给队列设置ttl属性,进入队列后超过ttl时间的消息变为死信
  • 给消息设置ttl属性,队列接收到消息超过ttl时间后变为死信

如何实现发送一个消息20秒后消费者才收到消息?

  • 给消息的目标队列指定死信交换机
  • 将消费者监听的队列绑定到死信交换机
  • 发送消息时给消息设置超时时间为20秒

2.3.延迟队列

利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue)模式。

延迟队列的使用场景包括:

  • 延迟发送短信
  • 用户下单,如果用户在15 分钟内未支付,则自动取消
  • 预约工作会议,20分钟后自动通知所有参会人员

因为延迟队列的需求非常多,所以RabbitMQ的官方也推出了一个插件,原生支持延迟队列效果。

这个插件就是DelayExchange插件。参考RabbitMQ的插件列表页面:https://www.rabbitmq.com/community-plugins.html

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3Eo0XJVo-1681919354805)(assets/image-20210718192529342.png)]

使用方式可以参考官网地址:https://blog.rabbitmq.com/posts/2015/04/scheduling-messages-with-rabbitmq

2.3.1.安装DelayExchange插件

参考课前资料:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HBDaGP0y-1681919354806)(assets/image-20210718193409812.png)]

2.3.2.DelayExchange原理

DelayExchange需要将一个交换机声明为delayed类型。当我们发送消息到delayExchange时,流程如下:

  • 接收消息
  • 判断消息是否具备x-delay属性
  • 如果有x-delay属性,说明是延迟消息,持久化到硬盘,读取x-delay值,作为延迟时间
  • 返回routing not found结果给消息发送者
  • x-delay时间到期后,重新投递消息到指定队列

2.3.3.使用DelayExchange

插件的使用也非常简单:声明一个交换机,交换机的类型可以是任意类型,只需要设定delayed属性为true即可,然后声明队列与其绑定即可。

1)声明DelayExchange交换机

基于注解方式(推荐):

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qRrk4qhT-1681919354807)(assets/image-20210718193747649.png)]

也可以基于@Bean的方式:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NoIKQM3c-1681919354808)(assets/image-20210718193831076.png)]

2)发送消息

发送消息时,一定要携带x-delay属性,指定延迟的时间:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6NlCYWKT-1681919354809)(assets/image-20210718193917009.png)]

2.3.4.总结

延迟队列插件的使用步骤包括哪些?

•声明一个交换机,添加delayed属性为true

•发送消息时,添加x-delay头,值为超时时间

3.惰性队列

3.1.消息堆积问题

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-swvCVqiX-1681919354810)(assets/image-20210718194040498.png)]

解决消息堆积有两种思路:

  • 增加更多消费者,提高消费速度。也就是我们之前说的work queue模式
  • 扩大队列容积,提高堆积上限

要提升队列容积,把消息保存在内存中显然是不行的。

3.2.惰性队列

从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的概念,也就是惰性队列。惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存
  • 支持数百万条的消息存储

3.2.1.基于命令行设置lazy-queue

而要设置一个队列为惰性队列,只需要在声明队列时,指定x-queue-mode属性为lazy即可。可以通过命令行将一个运行中的队列修改为惰性队列:

rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues  

命令解读:

  • rabbitmqctl :RabbitMQ的命令行工具
  • set_policy :添加一个策略
  • Lazy :策略名称,可以自定义
  • "^lazy-queue$" :用正则表达式匹配队列的名字
  • '{"queue-mode":"lazy"}' :设置队列模式为lazy模式
  • --apply-to queues :策略的作用对象,是所有的队列

3.2.2.基于@Bean声明lazy-queue

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sU0sZ5Ri-1681919354811)(assets/image-20210718194522223.png)]

3.2.3.基于@RabbitListener声明LazyQueue

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NkThJjHQ-1681919354812)(assets/image-20210718194539054.png)]

3.3.总结

消息堆积问题的解决方案?

  • 队列上绑定多个消费者,提高消费速度
  • 使用惰性队列,可以再mq中保存更多消息

惰性队列的优点有哪些?

  • 基于磁盘存储,消息上限高
  • 没有间歇性的page-out,性能比较稳定

惰性队列的缺点有哪些?

  • 基于磁盘存储,消息时效性会降低
  • 性能受限于磁盘的IO

4.MQ集群

4.1.集群分类

RabbitMQ的是基于Erlang语言编写,而Erlang又是一个面向并发的语言,天然支持集群模式。RabbitMQ的集群有两种模式:

普通集群:是一种分布式集群,将队列分散到集群的各个节点,从而提高整个集群的并发能力。

镜像集群:是一种主从集群,普通集群的基础上,添加了主从备份功能,提高集群的数据可用性。

镜像集群虽然支持主从,但主从同步并不是强一致的,某些情况下可能有数据丢失的风险。因此在RabbitMQ的3.8版本以后,推出了新的功能:仲裁队列来代替镜像集群,底层采用Raft协议确保主从的数据一致性。

4.2.普通集群

4.2.1.集群结构和特征

普通集群,或者叫标准集群(classic cluster),具备下列特征:

  • 会在集群的各个节点间共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
  • 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回
  • 队列所在节点宕机,队列中的消息就会丢失

结构如图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pS3qwrND-1681919354813)(assets/image-20210718220843323.png)]

4.2.2.部署

参考课前资料:《RabbitMQ部署指南.md》

4.3.镜像集群

4.3.1.集群结构和特征

镜像集群:本质是主从模式,具备下面的特征:

  • 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份。
  • 创建队列的节点被称为该队列的主节点,备份到的其它节点叫做该队列的镜像节点。
  • 一个队列的主节点可能是另一个队列的镜像节点
  • 所有操作都是主节点完成,然后同步给镜像节点
  • 主宕机后,镜像节点会替代成新的主

结构如图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MbNAuF81-1681919354814)(assets/image-20210718221039542.png)]

4.3.2.部署

参考课前资料:《RabbitMQ部署指南.md》

4.4.仲裁队列

4.4.1.集群特征

仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:

  • 与镜像队列一样,都是主从模式,支持主从数据同步
  • 使用非常简单,没有复杂的配置
  • 主从同步基于Raft协议,强一致

4.4.2.部署

参考课前资料:《RabbitMQ部署指南.md》

4.4.3.Java代码创建仲裁队列

@Bean
public Queue quorumQueue() {return QueueBuilder.durable("quorum.queue") // 持久化.quorum() // 仲裁队列.build();
}

4.4.4.SpringAMQP连接MQ集群

注意,这里用address来代替host、port方式

spring:rabbitmq:addresses: 192.168.150.105:8071, 192.168.150.105:8072, 192.168.150.105:8073username: itcastpassword: 123321virtual-host: /

4.2.2.部署

参考课前资料:《RabbitMQ部署指南.md》

4.3.镜像集群

4.3.1.集群结构和特征

镜像集群:本质是主从模式,具备下面的特征:

  • 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份。
  • 创建队列的节点被称为该队列的主节点,备份到的其它节点叫做该队列的镜像节点。
  • 一个队列的主节点可能是另一个队列的镜像节点
  • 所有操作都是主节点完成,然后同步给镜像节点
  • 主宕机后,镜像节点会替代成新的主

结构如图:

[外链图片转存中…(img-MbNAuF81-1681919354814)]

4.3.2.部署

参考课前资料:《RabbitMQ部署指南.md》

4.4.仲裁队列

4.4.1.集群特征

仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:

  • 与镜像队列一样,都是主从模式,支持主从数据同步
  • 使用非常简单,没有复杂的配置
  • 主从同步基于Raft协议,强一致

4.4.2.部署

参考课前资料:《RabbitMQ部署指南.md》

4.4.3.Java代码创建仲裁队列

@Bean
public Queue quorumQueue() {return QueueBuilder.durable("quorum.queue") // 持久化.quorum() // 仲裁队列.build();
}

4.4.4.SpringAMQP连接MQ集群

注意,这里用address来代替host、port方式

spring:rabbitmq:addresses: 192.168.150.105:8071, 192.168.150.105:8072, 192.168.150.105:8073username: itcastpassword: 123321virtual-host: /

相关文章:

RabbitMQ-高级篇

服务异步通信-高级篇 消息队列在使用过程中,面临着很多实际问题需要思考: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D6S1iAs7-1681919354777)(assets/image-20210718155003157.png)] 1.消息可靠性 消息从发送&#x…...

深度学习_Learning Rate Scheduling

我们在训练模型时学习率的设置非常重要。 学习率的大小很重要。如果它太大,优化就会发散,如果它太小,训练时间太长,否则我们最终会得到次优的结果。其次,衰变率同样重要。如果学习率仍然很大,我们可能会简…...

snmp服务利用(端口:161、199、391、705、1993)

服务介绍 简单网络管理协议 是一种广泛应用于TCP/IP网络的网络管理标准协议(应用层协议),它提供了一种通过运行网络管理软件的中心计算机(即网络管理工作站)来监控和管理计算机网络的标准化管理框架(方法)。目前已颁布了SNMPv1、SNMPv2c和SNMPv3三个版本,广泛应用于网…...

MyBatis(二)—— 进阶

一、详解配置文件 1.1 核心配置文件 官方建议命名为mybatis-config.xml&#xff0c;核心配置文件里可以进行如下的配置&#xff1a; <environments> 和 <environment> mybatis可以配置多套环境&#xff08;开发一套、测试一套、、、&#xff09;&#xff0c; 在…...

婚恋交友app开发中需要注意的安全问题

前言 随着移动设备的普及&#xff0c;婚恋交友app已经成为了人们生活中重要的一部分。但是&#xff0c;这些应用的开发者需要确保应用的安全性&#xff0c;以保护用户的隐私和数据免受攻击。本文将介绍在婚恋交友app开发中需要注意的安全问题。 在当今数字化时代&#xff0c;…...

相机的内参和外参介绍

注&#xff1a;以下相机内参与外参介绍除来自网络整理外全部来自于《视觉SLAM十四讲从理论到实践 第2版》中的第5讲&#xff1a;相机与图像&#xff0c;为了方便查看&#xff0c;我将每节合并到了一幅图像中 相机与摄像机区别&#xff1a;相机着重于拍摄静态图像&#x…...

Node【包】

文章目录 &#x1f31f;前言&#x1f31f;Nodejs包&#x1f31f;什么是包&#xff1f;&#x1f31f;自定义包&#x1f31f;包配置文件&#x1f31f;示例&#x1f31f;Package.json 属性说明&#x1f31f;语义化版本号&#x1f31f;package.json示例 &#x1f31f;符合CommonJS规…...

CHAPTER 2: 《BACK-OF-THE-ENVELOPE ESTIMATION》 第2章 《初略的估计》

CHAPTER 2: BACK-OF-THE-ENVELOPE ESTIMATION 在系统设计面试中&#xff0c;有时您会被要求估计系统容量或使用粗略估计的性能需求。根据杰夫迪恩的说法&#xff0c;谷歌高级研究员&#xff0c;“粗略的计算是你使用结合思想实验和常见的性能数字&#xff0c;以获得良好的感觉…...

RocketMQ高级概念

一 RocketMQ核心概念 1.消息模型&#xff08;Message Model&#xff09; RocketMQ主要由 Producer、Broker、Consumer 三部分组成&#xff0c;其中Producer 负责⽣产消息&#xff0c;Consumer 负责消费消息&#xff0c;Broker 负责存储消息。Broker 在实际部署过程中对应⼀台…...

eureka注册中心和RestTemplate

eureka注册中心和restTemplate的使用说明 eureka的作用 消费者该如何获取服务提供者的具体信息 1.服务者启动时向eureka注册自己的信息 2.eureka保存这些信息 3.消费者根据服务名称向eureka拉去提供者的信息 如果有多个服务提供者&#xff0c;消费者该如何选择&#xff1f; 服…...

redis复制的设计与实现

一、复制 1.1旧版功能的实现 旧版Redis的复制功能分为 同步&#xff08;sync&#xff09;和 命令传播。 同步用于将从服务器更新至主服务器的当前状态。命令传播用于 主服务器状态变化时&#xff0c;让主从服务器状态回归一致。 1.1.1同步 当客户端向服务端发送slaveof命令…...

Docker更换国内镜像源

什么是Docker Docker 是一个开源的应用容器引擎&#xff0c;基于 Go 语言 并遵从 Apache2.0 协议开源。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中&#xff0c;然后发布到任何流行的 Linux 机器上&#xff0c;也可以实现虚拟化。 容器是完全…...

【网络编程】网络套接字,UDP,TCP套接字编程

前言 小亭子正在努力的学习编程&#xff0c;接下来将开启javaEE的学习~~ 分享的文章都是学习的笔记和感悟&#xff0c;如有不妥之处希望大佬们批评指正~~ 同时如果本文对你有帮助的话&#xff0c;烦请点赞关注支持一波, 感激不尽~~ 特别说明&#xff1a;本文分享的代码运行结果…...

海斯坦普Gestamp EDI 需求分析

海斯坦普Gestamp&#xff08;以下简称&#xff1a;Gestamp&#xff09;是一家总部位于西班牙的全球性汽车零部件制造商&#xff0c;目前在全球23个国家拥有超过100家工厂。Gestamp的业务涵盖了车身、底盘和机电系统等多个领域&#xff0c;其产品范围包括钣金、车身结构件、车轮…...

gpt写文章批量写文章-gpt3中文生成教程

怎么用gpt写文章批量写文章 批量写作文章是很多网站、营销人员、编辑等需要的重要任务&#xff0c;GPT可以帮助您快速生成大量自然、通顺的文章。下面是一个简单的步骤介绍&#xff0c;告诉您如何使用GPT批量写作文章。 步骤1&#xff1a;选择好训练模型 首先&#xff0c;选…...

HashMap实现原理

HashMap是基于散列表的Map接口的实现。插入和查询的性能消耗是固定的。可以通过构造器设置容量和负载因子&#xff0c;一调整容易得性能。 散列表&#xff1a;给定表M&#xff0c;存在函数f(key)&#xff0c;对任意给定的关键字值key&#xff0c;代入函数后若能得到包含该关键字…...

【Java 数据结构】PriorityQueue(堆)的使用及源码分析

&#x1f389;&#x1f389;&#x1f389;点进来你就是我的人了 博主主页&#xff1a;&#x1f648;&#x1f648;&#x1f648;戳一戳,欢迎大佬指点!人生格言&#xff1a;当你的才华撑不起你的野心的时候,你就应该静下心来学习! 欢迎志同道合的朋友一起加油喔&#x1f9be;&am…...

使用 Kubernetes 运行 non-root .NET 容器

翻译自 Richard Lander 的博客 Rootless 或 non-root Linux 容器一直是 .NET 容器团队最需要的功能。我们最近宣布了所有 .NET 8 容器镜像都可以通过一行代码配置为 non-root 用户。今天的文章将介绍如何使用 Kubernetes 处理 non-root 托管。 您可以尝试使用我们的 non-root…...

为什么大量失业集中爆发在2023年?被裁?别怕!失业是跨越职场瓶颈的关键一步!对于牛逼的人,这是白捡N+1!...

被裁究竟是因为自身能力不行&#xff0c;还是因为大环境不行&#xff1f; 一位网友说&#xff1a; 被裁后找不到工作&#xff0c;本质上还是因为原来的能力就配不上薪资。如果确实有技术在身&#xff0c;根本不怕被裁&#xff0c;相当于白送n1&#xff01; 有人赞同楼主的观点&…...

Word控件Spire.Doc 【脚注】字体(3):将Doc转换为PDF时如何使用卸载的字体

Spire.Doc for .NET是一款专门对 Word 文档进行操作的 .NET 类库。在于帮助开发人员无需安装 Microsoft Word情况下&#xff0c;轻松快捷高效地创建、编辑、转换和打印 Microsoft Word 文档。拥有近10年专业开发经验Spire系列办公文档开发工具&#xff0c;专注于创建、编辑、转…...

keil5使用c++编写stm32控制程序

keil5使用c编写stm32控制程序 一、前言二、配置图解三、std::cout串口重定向四、串口中断服务函数五、结尾废话 一、前言 想着搞个新奇的玩意玩一玩来着&#xff0c;想用c编写代码来控制stm32&#xff0c;结果在keil5中&#xff0c;把踩给我踩闷了&#xff0c;这里简单记录一下…...

中国社科院与美国杜兰大学金融管理硕士项目——在职读研的日子里藏着我们未来无限可能

人生充满期待&#xff0c;梦想连接着未来。每一天都可以看作新的一页&#xff0c;要努力去成为最好的自己。在职读研的光阴里藏着无限的可能&#xff0c;只有不断的努力&#xff0c;不断的强大自己&#xff0c;未来会因为你的不懈坚持而发生改变&#xff0c;纵使眼前看不到希望…...

hardhat 本地连接matemask钱包

Hardhat 安装 https://hardhat.org/hardhat-runner/docs/getting-started#quick-start Running a Local Hardhat Network Hardhat greatly simplifies the process of setting up a local network by having an in-built local blockchain which can be easily run through a…...

【华为OD机试真题】1001 - 在字符串中找出连续最长的数字串含-号(Java C++ Python JS)| 机试题+算法思路+考点+代码解析

文章目录 一、题目🔸题目描述🔸输入输出二、代码参考🔸Java代码🔸 C++代码🔸 Python代码🔸 JS代码作者:KJ.JK🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🍂个人博客首页: KJ.JK 💖系列专栏:华为OD机试(Java C++ Python JS)...

CrackMapExec 域渗透工具使用

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、CrackMapExec 是什么&#xff1f;二、简单使用1、获取帮助信息2、smb连接执行命令3、使用winrm执行命令&#xff08;躲避杀软&#xff09;4、smb 协议常用枚…...

Modbus协议学习

以下内容从参考文章学习提炼 [参考文章](https://www.cnblogs.com/The-explosion/p/11512677.html) ## 基本概念 Modbus用的是主从通讯技术&#xff0c;主设备操作查询从设备。可以通过物理接口&#xff0c;可选用串口&#xff08;RS232、RS485、RS422&#xff09;&#xff0c…...

camunda如何处理流程待办任务

在 Camunda 中处理流程任务需要使用 Camunda 提供的 API 或者用户界面进行操作。以下是两种常用的处理流程任务的方式&#xff1a; 1、通过 Camunda 任务列表处理任务&#xff1a;在 Camunda 任务列表中&#xff0c;可以看到当前需要处理的任务&#xff0c;点击任务链接&#…...

git部分文件不想提交解决方案

正确的做法应该是&#xff1a;git rm --cached logs/xx.log&#xff0c;然后更新 .gitignore 忽略掉目标文件&#xff0c;最后 git commit -m "We really dont want Git to track this anymore!" 具体的原因如下&#xff1a; 被采纳的答案虽然能达到&#xff08;暂…...

2023年全国最新道路运输从业人员精选真题及答案58

百分百题库提供道路运输安全员考试试题、道路运输从业人员考试预测题、道路安全员考试真题、道路运输从业人员证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 69.根据《公路水路行业安全生产风险管理暂行办法》&#xff0c;…...

Zimbra 远程代码执行漏洞(CVE-2019-9670)漏洞分析

Zimbra 远程代码执行漏洞(CVE-2019-9670)漏洞分析 漏洞简介 Zimbra是著名的开源系统&#xff0c;提供了一套开源协同办公套件包括WebMail&#xff0c;日历&#xff0c;通信录&#xff0c;Web文档管理和创作。一体化地提供了邮件收发、文件共享、协同办公、即时聊天等一系列解决…...