【最优化理论】线性规划
文章目录
- 什么是线性规划(Linear Programming,LP)?
- 线性规划的标准形式
- 非标准形LP模型转化为标准形LP模型
- 基本概念
- 基本解&基矩阵&基变量&非基变量
- 基本可行解&可行基矩阵&非退化的基本可行解&退化的基本可行解
- 基本可行解存在性
- 求基本可行解
- 示例:求基本可行解
- 求最优解
- 方法一(暴力枚举):求出所有基本可行解找最小
- 方法二(迭代):从一个基本可行解跳转到一个目标函数值更小的基本可行解
- 多面体
- 多面体基本性质
- 多面体的极点
- 示例:求极点
- 多面体S有多少个极点?- 有限个 & 最多CnmC_n^mCnm
- 多面体的方向
- 多面体的极方向
- 多面体的极方向有多少个?- 有限个
- 示例:求极方向
- 多面体分解定理
- 多面体分解定理有什么作用?
- 重新表示可行集
- 重新定义线性规划问题
- 何时有最优解?
- 最优解是什么?
- 单纯形法
- 基本思想
- 原理
- 方法
- 1 确定出基变量和出基向量的下标
- 2 确定进基变量和进基向量的下标
- 3 确定进基变量的值
- 终止条件
- 单纯形法计算步骤
- 单纯形法表格形式
什么是线性规划(Linear Programming,LP)?
目标函数为决策变量的线性函数,同时约束条件为线性等式或线性不等式约束。
线性规划的标准形式
非标准形LP模型转化为标准形LP模型
基本概念
基本解&基矩阵&基变量&非基变量
基本可行解&可行基矩阵&非退化的基本可行解&退化的基本可行解
基本可行解存在性
求基本可行解
求基本可行解<=>求极点<=>求可行基矩阵<=>Am∗nA_{m*n}Am∗n矩阵m个线性无关列
示例:求基本可行解
求最优解
方法一(暴力枚举):求出所有基本可行解找最小
求出所有基本可行解(即求极点)。
代入目标函数找出最小极点(该最小极点即为最优解,因为最优解一定在极点取得)。
方法二(迭代):从一个基本可行解跳转到一个目标函数值更小的基本可行解
多面体
多面体基本性质
多面体的极点
x若是极点,正分量对应的A的列一定线性无关。
示例:求极点
多面体S有多少个极点?- 有限个 & 最多CnmC_n^mCnm
最多有CnmC_n^mCnm个极点,一般都少于CnmC_n^mCnm,有两个原因。
原因1:从n个列中选出m列不一定线性无关。
原因2:即使这m列线性无关,其组成的B也不一定满足B−1b≥0B^{-1}b\ge 0B−1b≥0。
多面体的方向
多面体的极方向
多面体的极方向有多少个?- 有限个
示例:求极方向
d≥0
多面体分解定理
多面体分解定理有什么作用?
重新表示可行集
重新定义线性规划问题
为什么min∑λiCTxi\min \sum \lambda_i C^Tx_imin∑λiCTxi等价于minCTxi,i=1,...,k\min C^Tx_i,i=1,...,kminCTxi,i=1,...,k?
求minCTxi,i=1,...,k\min C^Tx_i,i=1,...,kminCTxi,i=1,...,k,找到最小xrx_rxr就是最优值点,令min∑λiCTxi\min \sum \lambda_i C^Tx_imin∑λiCTxi中λr=1\lambda_r=1λr=1其他的λ都为0,CTxrC^Tx_rCTxr就是最优值。
何时有最优解?
CTdj≥0C^Td_j \ge 0CTdj≥0时,存在最优解。
CTdj<0C^Td_j \lt 0CTdj<0时,无解。
最优解是什么?
最优解一定在极点上取到。
minCTxi,i=1,...,k\min C^Tx_i,i=1,...,kminCTxi,i=1,...,k,找到最小xrx_rxr就是最优值点,CTxrC^Tx_rCTxr就是最优值。
单纯形法
基本思想
原理
实现基本可行基的转化
方法
从初始基本可行解出发,求一个改进的基本可行解。
1 确定出基变量和出基向量的下标
2 确定进基变量和进基向量的下标
3 确定进基变量的值
目标函数值只与非基变量有关。
终止条件
单纯形法计算步骤
单纯形法表格形式
相关文章:

【最优化理论】线性规划
文章目录什么是线性规划(Linear Programming,LP)?线性规划的标准形式非标准形LP模型转化为标准形LP模型基本概念基本解&基矩阵&基变量&非基变量基本可行解&可行基矩阵&非退化的基本可行解&退化的基本可行…...

数据库测试的认知和分类
数据库测试的认知和分类 目录:导读 系统测试 集成测试 单元测试 功能测试 数据库性能 性能优化分4部分 安全测试 现在的软件系统,尤其是业务应用系统,后台都连接着一个数据库。数据库中存储了大量的数据,数据库的设计是否…...

MQ中间件概念一览
一、概述 1. 大多应用中,可通过消息服务中间件来提升系统异步通信、扩展解耦能力 2. 消息服务中两个重要概念: 消息代理(message broker)和目的地(destination) 当消息发送者发送消息以后,将由…...
爱尔兰公司注册要求及条件
简介: 爱尔兰是一个高度发达的资本主义国家,也是欧盟、经济合作与发展组织、世界贸易组织和联合国的成员国。并且也是世界经济发展速度快的国家之一,因经济发达赢得了“欧洲小虎”的美誉。总体来看,爱经济发展势头趋稳,…...
Java中如何打印对象内存地址?
先看一个简单的程序,一般我们打印对象,大部分是下面的情况,可能会重写下toString()方法,这个另说 Frolan frolan new Frolan(); System.out.println(frolan);// 输出结果 com.test.admin.entity.Frolan2b80d80f这个结果其实是调…...
CF1707E Replace
题目描述 给定一个长为 nnn 的序列 a1,…,ana_1,\ldots,a_na1,…,an,其中对于任意的 iii 满足 1≤ai≤n1 \leq a_i \leq n1≤ai≤n。 定义一个二元组函数如下: f((l,r))(min{al,…,ar},max{al,…,ar})(l≤r)f((l,r))(\min\{a_l,\ldots,a_r\}…...

【Hello Linux】Linux工具介绍 (make/makefile git)
作者:小萌新 专栏:Linux 作者简介:大二学生 希望能和大家一起进步! 本篇博客简介:介绍Linux的常用工具make/makefile git Linux项目自动化构建工具 – make/Makefile 背景 会不会写Makefile 从侧面说明了一个人是否具…...

享元模式flyweight
享元模式属于结构型模式。享元模式是池技术的重要实现方式,它可以减少重复对象的创建,使用缓存来共享对象,从而降低内存的使用。细粒度的对象其状态可以分为两种:内部状态和外部状态。应用场景系统存在大量相似或相同的对象。外部…...

Pulsar
一、简介Apache Pulsar是Apache软件基金会顶级项目,是下一代云原生分布式消息流平台,集消息、存储、轻量化函数式计算为一体,采用计算与存储分离架构设计,支持多租户、持久化存储、多机房跨区域数据复制,具有强一致性、…...

项目介绍 + 定长内存池设计及实现
你好,我是安然无虞。 文章目录项目介绍当前项目做的是什么?技术栈内存池是什么?池化技术内存池内存池主要解决的问题malloc定长内存池学习目的定长内存池设计项目介绍 当前项目做的是什么? 这个项目是实现一个高并发的内存池, 它的原型是 Google 的一个开源项…...
Linux--线程安全的单例模式--自旋锁--0211
1. 线程安全的单例模式 1.1 什么是单例模式 某些类, 只应该具有一个对象(实例), 就称之为单例. 1.1.1 懒汉方式实现单例模式 以上篇博文的线程池为例 Liunx--线程池的实现--0208 09_Gosolo!的博客-CSDN博客 实现懒汉模式首先要先将构造函数私有化,…...

图文解说S参数(进阶篇)
S参数是RF工程师/SI工程师必须掌握的内容,业界已有多位大师写过关于S参数的文章,即便如此,在相关领域打滚多年的人, 可能还是会被一些问题困扰着。你懂S参数吗? 图文解说S参数(基础篇) 请继续往下看...台湾…...

Sentinel源码阅读
基础介绍 Sentinel 的使用可以分为两个部分: 核心库(Java 客户端):不依赖任何框架/库,能够运行于 Java 8 及以上的版本的运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持(见 主流框架适配&…...

2023年浙江食品安全管理员考试真题题库及答案
百分百题库提供食品安全管理员考试试题、食品安全管理员考试预测题、食品安全管理员考试真题、食品安全管理员证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 一、判断题 7.(重点)《餐饮服务食品安全…...

Webstorm 代码没有提示,uniapp 标签报错
问题 项目是用脚手架创建的: vue create -p dcloudio/uni-preset-vue my-project 打开之后,添加view标签警告报错的。代码也没有提示,按官方说法:CLI 工程默认带了 uni-app 语法提示和 5App 语法提示。 但是我这里就是有问题。…...

MySQL-Innodb引擎事务原理
文章目录1.事务介绍2 事务特性3. 事务的实现原理4 redo log 保证持久性5 undo log 保证原子性6 MVCC 概念6.1 隐藏字段6.2 版本链6.3 ReadView6.3.1readview 版本控制规则7 隔离性 实现7.2 隔离性- REPEATABLE READ 可重复读下8 一致性1.事务介绍 事务是一组操作的集合…...

Linux操作系统学习(了解环境变量)
文章目录环境变量初识除了上述介绍的PATH,还有一些常见的环境变量如:查看环境变量方法 :环境变量的基本概念:本地变量:环境变量初识 环境变量解释起来比较抽象,先看示例: #include <stdio.…...

数据分析思维(六)|循环/闭环思维
循环/闭环思维 1、概念 在很多的分析场景下,我们需要按照一套流程反复分析,而不是进行一次性的分析,也就是说这套流程的结果会成为该流程的新一次输入,从而形成一个闭环,此时的分析思维我们称之为循环/闭环思维。 常…...

C++:类和对象(下)
文章目录1 再谈构造函数1.1 构造函数体赋值1.2 初始化列表1.3 explicit关键字2 static成员2.1 概念2.2 特性3 友元3.1 友元函数(流插入(<<)及流提取(>>)运算符重载)3.2 友元类4 内部类5 匿名对…...
ASP.NET Core MVC 项目 AOP之IResultFilter和IAsyncResultFilter
目录 一:说明 二:IActionFilter同步 三:IAsyncActionFilter异步 一:说明 IResultFilter同步过滤器与IAsyncResultFilter异步过滤器常常被用作于渲染视图或处理结果。 IResultFilter同步过滤器执行顺序: 1:执行控制器中的构造函数,实例化控制器 2:执行具体的Acti…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...