当前位置: 首页 > news >正文

opencv——傅里叶变换、低通与高通滤波及直方图等操作

1、傅里叶变换

a、傅里叶变换原理

时域分析:以时间为参照进行分析。

频域分析:相当于上帝视角一样,看事物层次更高,时域的运动在频域来看就是静止的。

eg:投球——时域分析:第1分钟投了3分,第2分钟投了2分,第3分钟投了1分......第n分钟投了2分。

频域分析:每隔一分钟投一个3分球,每隔一分钟投一个2分球。

关于傅里叶变换详细描述可以参考知乎上的这篇文章:

文章链接:https://zhuanlan.zhihu.com/p/19763358

傅里叶变换的作用: 低频——变化缓慢的灰度分量

高频——变化剧烈的灰度分量

滤波: 低通滤波器——只保留低频,会使得图像模糊

高通滤波器——只保留高频,会使得图像细节增强

频域转换代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img=cv2.imread("lena.jpg",0)
img_float32=np.float32(img)
dft=cv2.dft(img_float32,flags=cv2.DFT_COMPLEX_OUTPUT)#图像转为频域,输入图像需要先转化为float32格式
dft_shift=np.fft.fftshift(dft)
#得到灰度图表现的形式
magnitude_spectrum=20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1])
plt.subplot(121)
plt.imshow(img,cmap='gray')
plt.title("input image")
plt.xticks([])
plt.yticks([])
plt.subplot(122)
plt.imshow(magnitude_spectrum,cmap='gray')
plt.title("magnitude spectrum")
plt.xticks()
plt.yticks()
plt.show()

b、低通与高通滤波

低通滤波代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img=cv2.imread("lena.jpg",0)
img_float32=np.float32(img)
dft=cv2.dft(img_float32,flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift=np.fft.fftshift(dft)
rows,cols=img.shape
crow,ccol=int(rows/2),int(cols/2) #中心位置
mask=np.zeros((rows,cols,2),np.uint8)#创建掩膜,进行低通滤波
mask[crow-30:crow+30,ccol-30:ccol+30]=1
fshift=dshift*mask
f_isift=np.fft.fftshift(fshift)
img_back=cv2.idft(f_ishift)#将图像转回去,和dft为互逆运算
img_back=cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121)
plt.imshow(img,cmap='gray')
plt.title("input image")
plt.xticks([])
plt.yticks([])
plt.subplot(122)
plt.imshow(img_back,cmap='gray')
plt.title("result1")
plt.xticks()
plt.yticks()
plt.show()

高通滤波代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img=cv2.imread("lena.jpg",0)
img_float32=np.float32(img)
dft=cv2.dft(img_float32,flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift=np.fft.fftshift(dft)
rows,cols=img.shape
crow,ccol=int(rows/2),int(cols/2) #中心位置
mask=np.ones((rows,cols,2),np.uint8)#创建掩膜,进行低通滤波
mask[crow-30:crow+30,ccol-30:ccol+30]=0
fshift=dshift*mask
f_isift=np.fft.fftshift(fshift)
img_back=cv2.idft(f_ishift)#将图像转回去,和dft为互逆运算
img_back=cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121)
plt.imshow(img,cmap='gray')
plt.title("input image")
plt.xticks([])
plt.yticks([])
plt.subplot(122)
plt.imshow(img_back,cmap='gray')
plt.title("result1")
plt.xticks()
plt.yticks()
plt.show()

2、直方图

图像像素点数值图

直方图

直方图:横坐标为像素值,从左到右即从0到255,纵坐标为每个像素值在图像中出现的次数。

单通道直方图代码:

import matplotlib.pyplot as plt
import cv2
img=cv2.imread("cat.jpg",0)#0代表灰度图
hist=cv2.calcHist([img],[0],None,[256],[0,256])#参数从左到右依次为图像、通道(012,BGR)、掩膜图像、histsize(BIN数量)、像素值范围
hist.shape
plt.hist(img.ravel(),256)
plt.show()

三个通道直方图代码:

img=cv2.imread("cat.jpg")
color=['b','g','r']
for i col in enumerate(color):histr=cv2.calcHist([img],[i],None,[256],[0,256])plt.plot(histr,color=col)plt.xlim([0,256])plt..show()

3、掩膜图像

创建掩膜代码:

import numpy as np
mask=np.zeros(img.shape[:2],np.uint8)
mask[100:300,100:400]=255
cv2.imshow("mask",mask)
cv2.waitKey()
cv2.destroyAllWindows()

掩膜操作:

mask_img=cv2.bitwise_and(img,img,mask=mask)#与操作
cv2.imshow("mask_img",mask_img)
cv2.waitKey()
cv2.destroyAllWindows()

计算掩膜操作的直方图:

hist_mask=cv2.calcHist([img],[0],mask,[256],[0,256])
plt.plot(hist_mask)
plt.xlim([0,256])
plt.show()

4、直方图均衡化

a、均衡化原理及计算方法

均衡化:让原本分布不均衡的直方图在坐标轴上变得更为均衡,如下图所示。

原图像及直方图

均衡化后的图像及直方图

均衡化计算过程:

步骤1:原图像灰度值统计

步骤2:每个灰度的个数、概率及累积概率(累积概率:加上前面几个像素点的概率,如:0.1875+0.25=0.4375)

步骤3:累积概率*灰度值取值范围(0.25*(255-0))

步骤4:均衡化后的灰度值统计

b、均衡化代码及效果

均衡化前的直方图展示:

img=cv2.imshow("cat.jpg")
plt.hist(img.ravel(),256)
plt.show()

均衡化代码:

equ=cv2.equalizeHist(img)
plt.hist(img.ravel(),256)
plt.show()

自适应均衡化:

clahe=cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8))
res_clahe=clahe.apply(img)
res=np.hstack((img,equ,res_clahe))
cv2.imshow("res",res)
cv2.waitKey()
cv2.destroyAllWindows()

相关文章:

opencv——傅里叶变换、低通与高通滤波及直方图等操作

1、傅里叶变换a、傅里叶变换原理时域分析:以时间为参照进行分析。频域分析:相当于上帝视角一样,看事物层次更高,时域的运动在频域来看就是静止的。eg:投球——时域分析:第1分钟投了3分,第2分钟投…...

【NGINX入门指北】 进阶篇

nginx 进阶篇 文章目录nginx 进阶篇一、Nginx Proxy 服务器1、代理原理2、proxy代理3、proxy缓存一、Nginx Proxy 服务器 1、代理原理 正向代理 内网客户机通过代理访问互联网,通常要设置代理服务器地址和端口。 反向代理 外网用户通过代理访问内网服务器&…...

Python中关于@修饰符、yeild关键词、next()函数的基本功能简述

关于修饰符:其实就是将修饰符下面的函数当成参数传给它上面的函数。 def a(x):print(a)adef b():print(b) 其效果等价为: def a(x):print(a)def b():print(b)a(b())有个记忆诀窍,的下面哪个函数最近,谁就是儿子,谁就…...

结合Coverity扫描Spring Boot项目进行Path Manipulation漏洞修复

本篇介绍使用Coverity 扫描基于Spring Boot 项目中的Path Manipulation 漏洞, 进而解决风险,并且可以通过扫描。 什么样的代码会被扫描有路径操纵风险? 在Spring Boot 项目中, 实验了如下的场景: 1. Control 中 file path 作为参数传递的会被扫描,单纯服务方法不会 场…...

【FFMPEG源码分析】从ffplay源码摸清ffmpeg框架(一)

ffplay入口 ffmpeg\fftools\ffplay.c int main(int argc, char **argv) {/*******************start 动态库加载/网络初始化等**************/int flags;VideoState *is;init_dynload();av_log_set_flags(AV_LOG_SKIP_REPEATED);parse_loglevel(argc, argv, options);/* regis…...

C++蓝桥杯 基础练习,高精度加法,输入两个整数a和b,输出这两个整数的和。a和b都不超过100位。

C蓝桥杯 基础练习,高精度加法 问题描述 输入两个整数a和b,输出这两个整数的和。a和b都不超过100位。 算法描述 由于a和b都比较大,所以不能直接使用语言中的标准数据类型来存储。对于这种问题,一般使用数组来处理。   定义一…...

MySQL面试题:SQL语句的基本语法

MySQL目录一、数据库入门1. 数据管理技术的三个阶段2. 关系型数据库与非关系型数据库3. 四大非关系型数据库a. 基于列的数据库(column-oriented)b. 键值对存储(Key-Value Stores)c. 文档存储(Document Stores&#xff…...

Fluid-数据编排能力原理解析

前言本文对Fluid基础功能-数据编排能力进行原理解析。其中涉及到Fluid架构和k8s csi driver相关知识。建议先了解相关概念,为了便于理解,本文使用JuiceFS作为后端runtime引擎。原理概述Fuild数据编排能力,主要是在云原生环境中,能…...

并发线程、锁、ThreadLocal

并发编程并发编程Java内存模型(JMM)并发编程核心问题—可见性、原子性、有序性volatile关键字原子性原子类CAS(Compare-And-Swap 比较并交换)ABA问题Java中的锁乐观锁和悲观锁可重入锁读写锁分段锁自旋锁共享锁/独占锁公平锁/非公平锁偏向锁/轻量级锁/重…...

CMMI-结项管理

结项管理(ProjectClosing Management, PCM)是指在项目开发工作结束后,对项目的有形资产和无形资产进行清算;对项目进行综合评估;总结经验教训等。结项管理过程域是SPP模型的重要组成部分。本规范阐述了结项管理的规程&…...

网络通信协议是什么?

网络通信基本模式 常见的通信模式有如下2种形式:Client-Server(CS) 、 Browser/Server(BS) 实现网络编程关键的三要素 IP地址:设备在网络中的地址,是唯一的标识。 端口:应用程序在设备中唯一的标识。 协议: 数据在网络中传输的…...

阶段5:Java分布式与微服务实战

目录 第33-34周 Spring Cloud电商实战 一、Eureka-server模块开发 1、引入依赖 2、配置文件 3、启动注解 一、Eureka-server模块开发 第33-34周 Spring Cloud电商实战 一、Eureka-server模块开发 1、引入依赖 父项目依赖:cloud-mall-practice springboot的…...

我的创作纪念日

目录 机缘 收获 日常 憧憬 机缘 其实本来从大一上学期后半段(2017)就开始谢谢零星的博客,只不过当时是自己用hexo搭建了一个小网站,还整了个域名:jiayoudangdang.top,虽然这个早就过期; 后来发现了CSDN&#xff…...

Qml学习——动态加载控件

最近在学习Qml,但对Qml的各种用法都不太熟悉,总是会搞忘,所以写几篇文章对学习过程中的遇到的东西做一个记录。 学习参考视频:https://www.bilibili.com/video/BV1Ay4y1W7xd?p1&vd_source0b527ff208c63f0b1150450fd7023fd8 目…...

设计模式之职责链模式

什么是职责链模式 职责链模式是避免请求发送者与接受者耦合在一起,让多个对象都可以接受到请求,从而将这些对象连接成一条链,并且沿着这条链传递请求,直到有对象处理为止。     职责链模式包含以下几个角色:    …...

MySQL入门篇-MySQL 8.0 延迟复制

备注:测试数据库版本为MySQL 8.0 这个blog我们来聊聊MySQL 延迟复制 概述 MySQL的复制一般都很快,虽然有时候因为 网络原因、大事务等原因造成延迟,但是这个无法人为控制。 生产中可能会存在主库误操作,导致数据被删除了,Oracl…...

FPGA时序约束与分析 --- 实例教程(1)

注意: 时序约束辅助工具或者相关的TCL命令,都必须在 open synthesis design / open implemention design 后才能有效运行。 1、时序约束辅助工具 2、查看相关时序信息 3、一般的时序约束顺序 1、 时序约束辅助工具(1)时序约束编辑…...

go深拷贝和浅拷贝

1、深拷贝(Deep Copy)拷贝的是数据本身,创造一个样的新对象,新创建的对象与原对象不共享内存,新创建的对象在内存中开辟一个新的内存地址,新对象值修改时不会影响原对象值。既然内存地址不同,释…...

linux网络系统层面的配置、管理及操作命令汇总

前几篇文章一一介绍了LINUX进程管理控制命令,关于linux系统中的软件包管理内容等,作为一名运维工程师,前两天刚处理了一起linux网络层面的情况,那么今天这篇文章就以linux网络层面为主题吧。当说到linux网络系统层面,e…...

R数据分析:孟德尔随机化中介的原理和实操

中介本身就是回归,基本上我看到的很多的调查性研究中在中介分析的方法部分都不会去提混杂,都是默认一个三角形画好,中介关系就算过去了,这里面默认的逻辑就是前两步回归中的混杂是一样的,计算中介效应的时候就自动消掉…...

微信小程序之bind和catch

这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

uniapp中使用aixos 报错

问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...

【若依】框架项目部署笔记

参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作: 压缩包下载:http://download.redis.io/releases 1. 上传压缩包,并进入压缩包所在目录,解压到目标…...