当前位置: 首页 > news >正文

Latex数学公式排版

文章目录

  • Latex使用
  • 最佳方式:读官方文档
    • Latex中的字符
    • 数学公式排版
      • 1.引入宏包:
      • 2.公式排版基础
      • 3.数学符号
        • (1).希腊字母
        • (2).指数,上下标,导数
        • (3).分式和根式
        • (4).关系符
        • (5).算符
        • (6).巨算符
        • (7).箭头

Latex使用

最佳方式:读官方文档

The not so short introduction to latex各种语言版本下载地址

Latex中的字符

  • 空格和分段:

    • 空格键和Tab 键输入的空白字符视为“空格”。连续的若干个空白字符视
      为一个空格。一行开头的空格忽略不计
    • 多个空行被视为一个空行。也可以在行末使用 \par 命令分段。
  • 注释: %

  • 特殊字符: # $ % & 等等,均需转义

\# \$ \% \& \{ \} \_
\^{} \~{} \textbackslash# $ % & { } _ ^ ~ \
  • 标点符号:

    • 引号: 中文直接输入,英文
    ``Please press the `x' key.''“Please press the ‘x’ key.”
    
    • 连字号和破折号
    daughter-in-law, X-rated\\
    pages 13--67\\
    yes---or no?
    % -个数的区别
    daughter-in-law, X-rated
    pages 13–67
    yes—or no?
    
    • 省略号: \ldots\dots

数学公式排版

1.引入宏包:

\usepackage{amsmath}

2.公式排版基础

  • 行内公式和行间公式:

    • 行内公式由一对$符号包裹
    The Pythagorean theorem is
    $a^2 + b^2 = c^2$.
    
    • 行间公式由equation 环境包裹
    The Pythagorean theorem is:
    \begin{equation}
    a^2 + b^2 = c^2 \label{pythagorean}
    \end{equation}
    Equation \eqref{pythagorean} is
    called `Gougu theorem' in Chinese.
    

在这里插入图片描述

\begin{equation*}
a^2 + b^2 = c^2
\end{equation*}
For short:
\[ a^2 + b^2 = c^2 \]
Or if you like the long one:
\begin{displaymath}
a^2 + b^2 = c^2
\end{displaymath}% 如果需要直接使用不带编号的行间公式,则将公式用命令\[ 和\] 包裹,与之等效的是displaymath 环境

在这里插入图片描述

3.数学符号

(1).希腊字母

在这里插入图片描述

(2).指数,上下标,导数

​ Latex中使用 ^ 和 _ 标明上下标.上下标内容需要用花括号{}包裹, 否则上下标只对后面一个符号起作用.

\(p^3_{ij} \qquadm_\mathrm{Knuth}\qquad\sum_{k=1}^{3} k 
\) \\[5pt]\(a^x+y \neq a^{x+y}\qquade^{x^2} \neq {e^x}^2  
\)
% \(\) 亦可用于行内公式

在这里插入图片描述

导数符号 ’ 是一类特殊的上标,可以适当连用表示多阶导数

\(f(x) = x^3 \quad f'(x) = 3x^2  
\)\(f''(x) = 6x \quad f^{3}(x) = 6  
\)

在这里插入图片描述

(3).分式和根式

  • 分式使用 \frac{分子}{分母} 来书写; amsmath也提供 \dfrac 和 \tfrac 两种不同的size
In display style:
\[
3/8 \qquad \frac{3}{8}
\qquad \tfrac{3}{8}
\]
In text style:
$1\frac{1}{2}$~hours \qquad
$1\dfrac{1}{2}$~hours

在这里插入图片描述

  • 根式 使用 \sqrt{…} ; 表示n次方根 \sqrt[n]{…}

(4).关系符

在这里插入图片描述

(5).算符

在这里插入图片描述

(6).巨算符

​ 行内和行间的显示不同在这里插入图片描述

巨算符的上下标位置可由\limits 和\nolimits 调整,前者令巨算符类似lim 或求和算符,上下标位于上下方;后者令巨算符类似积分号,上下标位于右上方和右下方

In text:
$\sum\limits_{i=1}^n \quad
\int\limits_0^{\frac{\pi}{2}} \quad
\prod\limits_\epsilon $ \\In display:
\[\sum\nolimits_{i=1}^n \quad
\int\limits_0^{\frac{\pi}{2}} \quad
\prod\nolimits_\epsilon \]
\end{document}

在这里插入图片描述

(7).箭头

在这里插入图片描述

相关文章:

Latex数学公式排版

文章目录 Latex使用最佳方式:读官方文档Latex中的字符数学公式排版1.引入宏包:2.公式排版基础3.数学符号(1).希腊字母(2).指数,上下标,导数(3).分式和根式(4).关系符(5).算符(6).巨算符(7).箭头 Latex使用 最佳方式:读官方文档 The not so short intro…...

【Linux】-关于Linux的指令(上)

作者:小树苗渴望变成参天大树 作者宣言:认真写好每一篇博客 作者gitee:gitee 如 果 你 喜 欢 作 者 的 文 章 ,就 给 作 者 点 点 关 注 吧! TOC 前言 今天我们来讲关于Linux的基本指令,博主讲的指令会对应着Windows…...

【论文写作】引言写作的四个重要的语言点之时态!!!

在本篇文章当中,我们将着重介绍四个重要的写作语言要点之一的时态,其他语言点如下: 1. 时态 2. 标志性的衔接词 3. 主动、被动语态 4. 段落 1. 简单现在时和现在进行时 时态主要有现在时和现在进行时,看以下两个句子 I live in…...

Super Yolo论文翻译

论文:SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery【IEEE】 论文地址: IEEE Xplore Full-Text PDF:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp&arnumber10075555项目地址:icey…...

【CocosCreator入门】CocosCreator组件 | ProgressBar(进度条)组件

Cocos Creator 是一款流行的游戏开发引擎,具有丰富的组件和工具,其中的ProgressBar组件是一种用于实现进度条效果的重要组件。它可以让我们在游戏中展示各种进度条效果,例如加载进度条、血条等。 目录 一、组件介绍 二、组件属性 三、脚本…...

大数据数仓维度建模

目录 维度建模分为三种: 1、星型模型: 2、雪花模型: 3、星座模型: 模型的选择: 维度表和事实表: 维度表: 维度表特性 : 事实表: 事实表特性: 事务型…...

ESP32设备驱动-BH1745NUC 亮度和颜色传感器驱动

BH1745NUC 亮度和颜色传感器驱动 文章目录 BH1745NUC 亮度和颜色传感器驱动2、硬件准备3、软件准备4、驱动实现BH1745NUC 是具有 IC 总线接口的数字颜色传感器 IC。 该 IC 感应红光、绿光和蓝光 (RGB) 并将它们转换为数字值。 高灵敏度、宽动态范围和出色的 Ircut 特性使该 IC …...

通达信VCP形态选股公式,憋了好几天才写出来

VCP形态的英文”Volatility Contraction Pattern”的缩写,意思是“波动收缩形态”。VCP形态是全美交易冠军马克米勒维尼的核心交易模式之一,在其著作《股票魔法师》中有详细介绍。 马克米勒维尼把VCP形态比喻为湿毛巾,拧过一次后仍含水&…...

vue 知识储备

vue2 和 vue3 的区别 模块拆分:vue3采用 compnent API 更注重模块上的拆分,而vue2中则需要使用完整的vuejs,无法使用单独的模块重写API:vue2组件方法挂载到实例中未使用也会被打包,vue3通过 tree-shaking机制,实现按需引入,减少用户打包后体积数据双向绑定:vue2使用 Ob…...

MySQL表的增删查改

目录 一 插入 1 基本语法 ①全列插入 ②指定列插入 ③多条记录插入 ④冲突更新 二 查询 查询全部数据 指定列查询 显示 拼接 取别名 去重查找 where 逻辑运算符和比较运算符 结果排序 Limit group by 分组 聚合函数 对于count 对于sum 对于group by 相关的语…...

详解C语言string.h中常用的14个库函数(三)

本篇博客继续讲解C语言string.h头文件中的库函数。本篇博客计划讲解3个函数,分别是:strstr, strtok, strerror。其中strstr函数我会用一种最简单的方式模拟实现。 strstr char * strstr ( const char * str1, const char * str2 );strstr可以在str1中查…...

无人机视频与GIS融合三维实景怎么实现?

无人机视频与GIS融合三维实景怎么实现?无人机三维GIS作为一项新兴的测绘重要手段,具有续航时间长、成本低、机动灵活等优点,为城市的规划建设带来极大便利。 那么此项技术有什么样的特点呢?下面智汇云舟就带大家一起来了解一下。 三维是将采集以及经运…...

瞬间让你效率提高一倍的高效学习方法

方法不对,努力白费;方法对了,事半功倍!在学习的过程中我们会遇到各种困难与阻碍,如何发现并优化自己的学习方法就变得尤为重要。高效学习方法是指通过科学的、有效的方法来提高学习效率,实现更好的学习成果…...

442. 数组中重复的数据|||41. 缺失的第一个正数|||485. 最大连续 1 的个数

442. 数组中重复的数据 题目 给你一个长度为 n 的整数数组 nums ,其中 nums 的所有整数都在范围 [1, n] 内,且每个整数出现 一次 或 两次 。请你找出所有出现 两次 的整数,并以数组形式返回。 你必须设计并实现一个时间复杂度为 O(n) 且仅…...

中国地图标准坐标和投影参数

目录 一、地理坐标 二、投影坐标 三、ArcGIS投影变换 四、说明 一、地理坐标 GCS_Krasovsky_1940(克拉索夫斯基_1940椭球体) 具体参数如下图: 每个国家或地区都有各自的基准面,我们通常所说的北京54坐标系、西安80坐标系实际上…...

CNN中卷积层、池化的计算公式

卷积计算公式 1、卷积层输入特征图(input feature map)的尺寸为:(batch_size,Channel,H,W) H(input)表示输入特征图的高 W(input)表示输入特征图的宽 C(input)表示输入特征图的通道数(如果是第一个卷积层则是输入图像的通道数,如果是中间…...

基类派生类多态虚函数?

通常在层次关系的根部有一个基类,其他类则直接或间接的从基类继承而来,这些继承得到的类称为派生类。基类负责定义在层次关系中所有类共同拥有的成员,而每个派生类定义各自特有的成员。 成员函数与继承派生类可以继承其基类的成员, 然而有时…...

像素是什么

像素分为设备像素和设备无关像素。 下面说说来龙去脉。 一、显示器 显示图像的电子设备。 (一)显示器种类 1.LCD LCD(Liquid crystal display),是液体晶体显示,也就是液晶显示器,LCD具有功耗低…...

NAT转换

目录标题 NAT:网络地址转换(cisco篇)一对一(静态)一对多(动态)多对多(动、静均可)端口映射(静态) nat:网络地址转换(华为篇&#xff0…...

设计模式:创建者模式 - 单例模式

文章目录 1.介绍2.单例模式的结构3.单例模式的实现(饿汉、懒汉)饿汉式-方式1(静态变量方式)饿汉式-方式2(静态代码块方式)懒汉式-方式1(线程不安全)懒汉式-方式2(线程安全…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂&#xff…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

【生成模型】视频生成论文调研

工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...