当前位置: 首页 > news >正文

Numpy从入门到精通——节省内存|通用函数

这个专栏名为《Numpy从入门到精通》,顾名思义,是记录自己学习numpy的学习过程,也方便自己之后复盘!为深度学习的进一步学习奠定基础!希望能给大家带来帮助,爱睡觉的咋祝您生活愉快! 这一篇介绍《Numpy从入门到精通——节省内存|通用函数

在这里插入图片描述

文章目录

  • 一、节省内存
    • 2.1使用X=X+Y与X+=Y的区别
    • 2.2 X=X+Y与 X[:] = X+Y
  • 二、通用函数

一、节省内存

在机器学习中,常常会涉及到大量的数据处理,尤其在深度学习、机器学习中,参数越多,数据量也就越大。怎么样高效地保存、更新这些参数,将直接影响内存的使用,限免我们通过代码详细介绍几种节省内存的简单方法。

2.1使用X=X+Y与X+=Y的区别

在python语法中,x=x+y与x+=y的含义是一样的,都是在原有的x基础上加了个y,再赋值给x。但是从内存开销的角度来看,则是完全不一样的,我们可以通过id(X)来进行说明,id函数可以提高内存中引用对象的确切地址,下面我们通过实际的代码来进行讲解:
首先我们看X=X+Y

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
@Project :numpy学习 
@File    :task_32.py
@IDE     :PyCharm 
@Author  :咋
@Date    :2023/4/24 16:33 
"""
import numpy as np
Y = np.random.randn(10,2,3)
X=np.zeros_like(Y)
print(id(X))
X=X+Y
print(id(X))

输出为:

2291830693584
2291830728432

X在运行X=X+Y前后id不同,说明指向不同内存区域。
然后我们看X+=Y:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
@Project :numpy学习 
@File    :task_33.py
@IDE     :PyCharm 
@Author  :咋
@Date    :2023/4/24 16:35 
"""
import numpy as np
Y = np.random.randn(10,2,3)
X=np.zeros_like(Y)
print(id(X))
X+=Y
print(id(X))

输出为:

1723763400400
1723763400400

X在运行X+=Y前后id相同,说明指向一个内存区域,由此说明X+=Y更能够节省空间。

2.2 X=X+Y与 X[:] = X+Y

我们直接看代码:
首先是X=X+Y

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
@Project :numpy学习 
@File    :task_34.py
@IDE     :PyCharm 
@Author  :咋
@Date    :2023/4/24 16:38 
"""
import numpy as np
Y = np.random.randn(10,2,3)
X=np.zeros_like(Y)
print(id(X))
X=X+Y
print(id(X))

输出为:

1581693935312
1581693974256

X在运行X=X+Y前后id不同,说明指向不同内存区域。
接下来我们看X[:] = X+Y:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
@Project :numpy学习 
@File    :task_35.py
@IDE     :PyCharm 
@Author  :咋
@Date    :2023/4/24 16:39 
"""
import numpy as np
Y = np.random.randn(10,2,3)
X=np.zeros_like(Y)
print(id(X))
X[:]=X+Y
print(id(X))

输出为:

1769016729296
1769016729296

X在运行X[:]=X+Y前后id相同,说明指向一个内存区域,由此说明x[:] = x+y 更节省空间!

二、通用函数

在之前的学习中,我们已经介绍了很多特定的函数,但是numpy中的函数还有很多没有介绍。numpy中与两个基本对象,ndarray和ufunc,前面主要介绍了ndarray,下面介绍ufunc。很多ufunc底层都是C写的,所以运行速度非常快,下面用一个表格列举Numpy中的几个常见的通用函数。

函数使用方法
sqrt计算序列化数据的平方根
sin、cos三角函数
abs计算序列化数据的绝对值
log、log10、log2对数函数
exp指数函数
cumsum、cumproduct累计求和、求积
sum对一个序列化数据进行求和
mean计算均值
median计算中位数
std计算标准差
var计算方差
corrcoef计算相关系数

说明:
np.max,np.sum,np.min等函数中,都涉及一个有关轴的参数(即axis),该参数的具体含义,可参考下图:

在这里插入图片描述

在这里插入图片描述

相关文章:

Numpy从入门到精通——节省内存|通用函数

这个专栏名为《Numpy从入门到精通》,顾名思义,是记录自己学习numpy的学习过程,也方便自己之后复盘!为深度学习的进一步学习奠定基础!希望能给大家带来帮助,爱睡觉的咋祝您生活愉快! 这一篇介绍《…...

Docker-compose 启动 lnmp 开发环境

GitHub传送阵 docker-lnmp 项目帮助开发者快速构建本地开发环境,包括Nginx、PHP、MySQL、Redis 服务镜像,支持配置文件和日志文件映射,不限操作系统;此项目适合个人开发者本机部署,可以快速切换服务版本满足学习服务新…...

《android源码阅读四》Android系统源码整编、单编并运行到虚拟机

1、编译环境 《安装Ubuntu系统》《android源码下载》 2、整编源码 进入Android源码根目录 cd AOSP初始化环境 source build/envsetup.sh清除缓存 make clobber选择编译目标 // 选择编译目标 lunch // 因为本次是在虚拟机中运行,这里使用x86 lunch aosp_x86_6…...

深度学习技巧应用8-各种数据类型的加载与处理,并输入神经网络进行训练

大家好,我是微学AI,今天给大家介绍一下深度学习技巧应用8-各种数据类型的加载与处理,并输入神经网络进行训练。在模型训练中,大家往往对各种的数据类型比较难下手,对于非结构化数据已经复杂的数据的要进行特殊处理,这里介绍一下我们如何进行数据处理才能输入到模型中,进…...

【笔试】备战秋招,每日一题|20230415携程研发岗笔试

前言 最近碰到一个专门制作大厂真题模拟题的网站 codefun2000,最近一直在上面刷题。今天来进行2023.04.15携程研发岗笔试,整理了一下自己的思路和代码。 比赛地址 A. 找到you 题意: 给定一个仅包含小写字母的 n n n\times n nn 的矩阵…...

【unity专题篇】—GUI(IMGUI)思维导图详解

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:uni…...

【C++ Metaprogramming】0. 在C++中实现类似C#的泛型类

两年前,笔者因为项目原因刚开始接触C,当时就在想,如果C有类似C#中的泛型限定就好了,能让代码简单许多。我也一度认为: 虽然C有模板类,但是却没办法实现C#中泛型特有的 where 关键词: public c…...

TDA4VM/VH 芯片 NAVSS0

请从官网下载 TD4VM 技术参考手册,地址如下: TDA4VM 技术参考手册地址 概述 (NAVSS0 的介绍在 TRM 的第10.2章节) NAVSS0 可以看作 MAIN 域的一个复杂外设域,实现如下功能: UDMASS: DMA 管理子系统;MODSS&#xf…...

基于springboot的前后端分离的案列(一)

SpringBootWeb案例 前面我们已经讲解了Web前端开发的基础知识,也讲解了Web后端开发的基础(HTTP协议、请求响应),并且也讲解了数据库MySQL,以及通过Mybatis框架如何来完成数据库的基本操作。 那接下来,我们就通过一个案例&#xf…...

Docker网络模式详解

文章目录 一、docker网络概述1、docker网络实现的原理1.1 随机映射端口( 从32768开始)1.2 指定映射端口1.3 浏览器访问测试 二、 docker的网络模式1、默认网络2、使用docker run 创建Docker容器时,可以用--net或--network 选项指定容器的网络模式 三、docker网络模式…...

PXE高效批量网络装机

PXE 定义 PXE(预启动执行环境,在操作系统之前运行)是由Intel公司开发的网络引导技术,工作在client /server模式,允许客户机通过网络从远程服务器下载引导镜像,并加载安装文件或者整个操作系统。 具备以下三个优点 1 规模化: 同时…...

YOLOv5+双目实现三维跟踪(python)

YOLOv5双目实现三维跟踪(python) 1. 目标跟踪2. 测距模块2.1 测距原理2.2 添加测距 3. 细节修改(可忽略)4. 实验效果 相关链接 1. YOLOV5 双目测距(python) 2. YOLOV7 双目测距(python&#x…...

ESP8266使用SDK软硬件定时执行函数

1、软件定时 以下接口使用的定时器由软件实现,定时器的函数在任务中被执行。因为任务可能被中断,或者被其他高优先级的任务延迟,因此以下os_timer系列的接口并不能保证定时器精确执行。 注意: ①对于同一个 timer,os…...

ThreadPoolExecutor源码阅读流程图

1.创建线程池 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue) {this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,Executors.defaultThreadFactory(), def…...

如何通过筛选高质量爬虫IP提升爬虫效率?

前言 对于做数据抓取的技术员来说&#xff0c;如何稳定高效的爬取数据ip库池起到决定性作用&#xff0c;对于爬虫ip池的维护&#xff0c;可以从以下几个方面入手&#xff1a; 目录 一、验证爬虫ip的可用性二、更新爬虫ip池三、维护爬虫ip的质量四、监控爬虫ip的使用情况 一、验…...

C#中定义数组--字符串及数组操作

C#中定义数组–字符串及数组操作 以前用VB的时候经常使用数组&#xff0c;不过C#用习惯后数组基本上用的不多了。 像用List<>&#xff0c;ArrayList&#xff0c;Dirctionary<,>都比较好用。 一、一维&#xff1a; int[] numbers new int[]{1,2,3,4,5,6}; //不…...

嵌入式就业怎么样?

嵌入式就业怎么样? 现在的IT行业,嵌入式是大热门&#xff0c;下面也要来给大家介绍下学习嵌入式之后的发展以及就业怎么样。 首先是好找工作。嵌入式人才目前是处于供不应求的状态中&#xff0c;据权威统计机构统计在所有软件开发类人才的需求中&#xff0c;对嵌入式工程师的…...

用户订阅付费如何拆解分析?看这篇就够了

会员制的订阅付费在影音娱乐行业中已相当普及&#xff0c;近几年&#xff0c;不少游戏厂商也开始尝试订阅收费模式。在分析具体的用户订阅偏好以及订阅付费模式带来的增长效果时&#xff0c;我们常常会有这些疑问&#xff1a; 如何从用户的整体付费行为中具体拆解订阅付费事件…...

智能合约中如何调用其他智能合约

智能合约是区块链技术中的一项关键功能&#xff0c;它可以让开发者编写代码来自动执行一系列的操作&#xff0c;从而实现各种复杂的业务逻辑。在许多应用场景中&#xff0c;一个智能合约可能需要调用另一个智能合约来完成某些任务。本文将介绍智能合约如何调用其他智能合约&…...

python的多任务处理

在现代计算机系统中&#xff0c;多任务处理是一项重要的技术&#xff0c;可以大幅提高程序的运行效率。Python语言提供了多种多任务处理的方式&#xff0c;本文将介绍其中几种常见的方式&#xff0c;包括多进程、多线程和协程。 多进程 进程是计算机中运行程序的实例&#xf…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...