YOLOv5+双目实现三维跟踪(python)
YOLOv5+双目实现三维跟踪(python)
- 1. 目标跟踪
- 2. 测距模块
- 2.1 测距原理
- 2.2 添加测距
- 3. 细节修改(可忽略)
- 4. 实验效果
相关链接
1. YOLOV5 + 双目测距(python)
2. YOLOV7 + 双目测距(python)
3. YOLOv7+双目实现三维跟踪(python)
4. 具体实现效果已在Bilibili发布,点击跳转
1. 目标跟踪
用yolov5实现跟踪步骤比较简单,去官网下载deepsort源码,这里有个版本对应关系
DeepSort v3.0 ~YOLOv5 v5.0-------------------DeepSort v4.0 ~ YOLOv5 v6.1
后续有机会的话会特意写一下跟踪原理…
下载完DeepSort之后去YOLO官网下载相应的YOLO版本,然后把下载的YOLO拖进DeepSort文件夹里,并把YOLO文件夹改名为yolov5,接下来把环境装好,然后运行代码 track.py ,此时如果不出问题就完成了普通检测
也可以用终端运行命令python track.py --source 1.mp4 --show-vid --save-vid --yolo_weights yolov5/weights/yolov5s.pt
这里有几个常用知识需要注意的,我直接在以下代码作了注释
if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--yolo_weights', type=str, default='yolov5/weights/yolov5s.pt', help='model.pt path')parser.add_argument('--deep_sort_weights', type=str, default='deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7', help='ckpt.t7 path') # file/folder, 0 for webcam#parser.add_argument('--source', type=str, default='0', help='source')# 改成0可以调用摄像头parser.add_argument('--source', type=str, default='1.mp4', help='source')parser.add_argument('--output', type=str, default='output', help='output folder') # output folderparser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--show-vid', action='store_true', help='display tracking video results') # 显示检测画面parser.add_argument('--save-vid', action='store_true', help='save video tracking results') # 保存检测后的画面parser.add_argument('--save-txt', action='store_true', help='save MOT compliant results to *.txt')# class 0 is person, 1 is bycicle, 2 is car... 79 is ovenparser.add_argument('--classes', nargs='+', type=int, help='filter by class') # 检测类别#parser.add_argument('--classes', nargs='+', default=[0], type=int, help='filter by class') # default=[0]代表只检测coco数据集里的类别0,即person,同理可换成别的类别
2. 测距模块
2.1 测距原理
测距原理详见 双目三维测距(python)
2.2 添加测距
接下来调用测距代码到主代码 track.py 文件中,先在代码开头导入库,添加
from stereo import stereoconfig
from stereo.stereo import stereo_40
from stereo.stereo import stereo_threading, MyThread
from yolov5.utils.plots import plot_one_box
我们需要将立体匹配等代码写进跟踪模块里,具体写法在我之前开源的 YOLOv5+双目测距(python) 这片文章里已经提及,这里就不再细讲,最后计算得到目标框的中心点坐标和距离对其进行显示,具体如下
for *xyxy, conf, cls in det:# to deep sort formatx_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy)xywh_obj = [x_c, y_c, bbox_w, bbox_h]xywh_bboxs.append(xywh_obj)confs.append([conf.item()])if (0 < xyxy[2] < 1280):x_center = (xyxy[0] + xyxy[2]) / 2y_center = (xyxy[1] + xyxy[3]) / 2x_0 = int(x_center)y_0 = int(y_center)if (0 < x_0 < 1280):x1 = xyxy[0]x2 = xyxy[2]y1 = xyxy[1]y2 = xyxy[3]if (accel_frame % fps_set == 0):t3 = time.time() # stereo time endthread.join()points_3d = thread.get_result()# gol.set_value('points_3d', points_3d)t4 = time.time() # stereo time endprint(f'{s}Stereo Done. ({t4 - t3:.3f}s)')a = points_3d[int(y_0), int(x_0), 0] / 1000b = points_3d[int(y_0), int(x_0), 1] / 1000c = points_3d[int(y_0), int(x_0), 2] / 1000distance = ((a**2+b**2+c**2)**0.5)if (distance != 0): ## Add bbox to imagelabel = f'{names[int(cls)]} {conf:.2f} 'text_xy_0 = "*"print('点 (%d, %d) 的 %s 距离左摄像头的相对距离为 %0.2f m' % (x_center, y_center, label, distance))text_dis_avg = "dis:%0.2fm" % distancecv2.rectangle(im0, (int(x1 + (x2 - x1)), int(y1)),(int(x1 + (x2 - x1) + 5 + 100), int(y1 + 12)), colors[int(cls)],-1) # 画框存三维坐标cv2.putText(im0, text_dis_avg, (int(x1 + (x2 - x1) + 5), int(y1 + 10)),cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 2)
3. 细节修改(可忽略)
下边是一些小细节修改,可以忽略不看
为了实时显示画面,对运行的py文件点击编辑配置,在形参那里输入–view-img --save-txt
但实时显示画面太大,我们对显示部分做了修改,这部分也可以不要,具体是把代码
if view_img:cv2.imshow(str(p), im0)cv2.waitKey(1) # 1 millisecond
替换成
if view_img:cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)cv2.resizeWindow("Webcam", 1280, 720)cv2.moveWindow("Webcam", 0, 100)cv2.imshow("Webcam", im0)cv2.waitKey(1)
4. 实验效果
实验效果如下,可以看出来其实这里是存在一些问题的,虽然测距我只让他在左相机画面显示,但是跟踪的话两个相机画面同时进行了跟踪,估计是跟踪模块没有做改动,这一个细节后续也会去深入研究,大家如果有了解这一块如何修改的的也可以联系我
更多测距代码见博客主页,源代码后续会开源…
相关文章:

YOLOv5+双目实现三维跟踪(python)
YOLOv5双目实现三维跟踪(python) 1. 目标跟踪2. 测距模块2.1 测距原理2.2 添加测距 3. 细节修改(可忽略)4. 实验效果 相关链接 1. YOLOV5 双目测距(python) 2. YOLOV7 双目测距(python&#x…...
ESP8266使用SDK软硬件定时执行函数
1、软件定时 以下接口使用的定时器由软件实现,定时器的函数在任务中被执行。因为任务可能被中断,或者被其他高优先级的任务延迟,因此以下os_timer系列的接口并不能保证定时器精确执行。 注意: ①对于同一个 timer,os…...

ThreadPoolExecutor源码阅读流程图
1.创建线程池 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue) {this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,Executors.defaultThreadFactory(), def…...
如何通过筛选高质量爬虫IP提升爬虫效率?
前言 对于做数据抓取的技术员来说,如何稳定高效的爬取数据ip库池起到决定性作用,对于爬虫ip池的维护,可以从以下几个方面入手: 目录 一、验证爬虫ip的可用性二、更新爬虫ip池三、维护爬虫ip的质量四、监控爬虫ip的使用情况 一、验…...
C#中定义数组--字符串及数组操作
C#中定义数组–字符串及数组操作 以前用VB的时候经常使用数组,不过C#用习惯后数组基本上用的不多了。 像用List<>,ArrayList,Dirctionary<,>都比较好用。 一、一维: int[] numbers new int[]{1,2,3,4,5,6}; //不…...

嵌入式就业怎么样?
嵌入式就业怎么样? 现在的IT行业,嵌入式是大热门,下面也要来给大家介绍下学习嵌入式之后的发展以及就业怎么样。 首先是好找工作。嵌入式人才目前是处于供不应求的状态中,据权威统计机构统计在所有软件开发类人才的需求中,对嵌入式工程师的…...

用户订阅付费如何拆解分析?看这篇就够了
会员制的订阅付费在影音娱乐行业中已相当普及,近几年,不少游戏厂商也开始尝试订阅收费模式。在分析具体的用户订阅偏好以及订阅付费模式带来的增长效果时,我们常常会有这些疑问: 如何从用户的整体付费行为中具体拆解订阅付费事件…...
智能合约中如何调用其他智能合约
智能合约是区块链技术中的一项关键功能,它可以让开发者编写代码来自动执行一系列的操作,从而实现各种复杂的业务逻辑。在许多应用场景中,一个智能合约可能需要调用另一个智能合约来完成某些任务。本文将介绍智能合约如何调用其他智能合约&…...
python的多任务处理
在现代计算机系统中,多任务处理是一项重要的技术,可以大幅提高程序的运行效率。Python语言提供了多种多任务处理的方式,本文将介绍其中几种常见的方式,包括多进程、多线程和协程。 多进程 进程是计算机中运行程序的实例…...

Vue收集表单数据学习笔记
收集表单数据 v-model双向数据绑定,收集的是input框的value,单选按钮不存在value,就像代码中的男女选项,即使绑定性别v-model“sex”,控制台依然不能接收性别的值,因为没有value值,,…...

Linux搭建GitLab私有仓库,并内网穿透实现公网访问
文章目录 前言1. 下载Gitlab2. 安装Gitlab3. 启动Gitlab4. 安装cpolar5. 创建隧道配置访问地址6. 固定GitLab访问地址6.1 保留二级子域名6.2 配置二级子域名 7. 测试访问二级子域名 转载自远控源码文章:Linux搭建GitLab私有仓库,并内网穿透实现公网访问 …...
SpringBoot项目防重复提交注解开发
背景 在实际开发过程中,防重复提交的操作很常见。有细分配置针对某一些路径进行拦截,也有基于注解去实现的指定方法拦截的。 分析 实现原理 实现防重复提交,我们很容易想到就是用过滤器或者拦截器来实现。 使用拦截器就是继承HandlerInt…...

从软件哲学角度谈 Amazon SageMaker
如果你喜欢哲学并且你是一个 IT 从业者,那么你很可能对软件哲学感兴趣,你能发现存在于软件领域的哲学之美。本文我们就从软件哲学的角度来了解一下亚马逊云科技的拳头级产品 Amazon SageMaker,有两个出发点:一是 SageMaker 本身设…...

C++内联函数
目录 一、常规函数和内联函数的对比 二、如何使用 三、内联函数的特性 四、内联函数与宏 五、如何查看内联函数 六、【面试题】 前言-----内联函数是C中为程序运行速度所做的一项该进。常规函数和内联函数之间的主要区别不在于编写方式,而在于C编译器如何将他…...
JAVA大师的秘籍:轻松掌握高质量代码之道
如果你想写出高质量的代码,那掌握编写技巧可是必不可少哦!这不仅能让你的代码变得更加易读易维护,还可以让你的应用程序性能更强、稳定性更高!所以,别怕麻烦,多花些时间和心思在代码上,相信你一定能成为优秀的JAVA开发者! 要想让代码易读易维护、性能稳定,得拿出耐心和…...

OpenGL入门教程之 变换
引言 这是一个闪耀的时刻,因为我们即将能生产出令人惊叹的3D效果! 变换 向量和矩阵变换包括太多内容,但由于学过线性代数和GAMES101,因此不在此做过多阐述。仅阐述包括代码的GLM内容。 GLM的使用 (1)GLM…...

ASPICE详细介绍-4.车载项目为什么要符合ASPICE标准?
目录 车载项目为什么要符合ASPICE标准?ASPICE与功能安全的关系、区别?各大车厂对软件体系的要求 车载项目为什么要符合ASPICE标准? ASPICE(Automotive Software Process Improvement and Capability Determination)最…...

一文彻底理解Java 17中的新特性密封类
密封类的作用 在面向对象语言中,我们可以通过继承(extend)来实现类的能力复用、扩展与增强。但有的时候,有些能力我们不希望被继承了去做一些不可预知的扩展。所以,我们需要对继承关系有一些限制的控制手段。而密封类…...

【Git 入门教程】第四节、Git冲突:如何解决版本控制的矛盾
Git是目前最流行的版本控制系统之一,它为团队协作开发提供了方便和高效的方式。然而,在多人同时修改同一个文件时,可能会出现代码冲突(conflict),导致代码无法正确合并。那么,如何解决Git冲突呢…...

c++验证用户输入合法性的示例代码
c验证用户输入合法性的示例代码 本文介绍c验证用户输入合法性,用于检测限定用户输入值。包括:1、限定用户输入为整数(正负整数);2、限定用户输入为正整数;3、限定用户输入为正数(可以含有小数&…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...

向量几何的二元性:叉乘模长与内积投影的深层联系
在数学与物理的空间世界中,向量运算构成了理解几何结构的基石。叉乘(外积)与点积(内积)作为向量代数的两大支柱,表面上呈现出截然不同的几何意义与代数形式,却在深层次上揭示了向量间相互作用的…...
【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析
1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器(TI)推出的一款 汽车级同步降压转换器(DC-DC开关稳压器),属于高性能电源管理芯片。核心特性包括: 输入电压范围:2.95V–6V,输…...