当前位置: 首页 > news >正文

「3」线性代数(期末复习)

🚀🚀🚀大家觉不错的话,就恳求大家点点关注,点点小爱心,指点指点🚀🚀🚀 

矩阵的秩

定义4:
在mxn矩阵A中,任取k行与k列(k<=m,k<=n),位于这些行列交叉处的k^2个元素,不改变他们在A的位置次序而得的k阶行列式,称为矩阵A的k阶子式
mxn矩阵A的k阶子式共有(C[m])^k·(C[n])^k
引理:A~B,则A与B的最高阶数相等
定义5:
设在矩阵A中有一个不等于0的r阶子式D,且所有的r+1阶子式(如果存在的话)全等于0,因此把r阶非零子式称为最高阶非零子式,数r称为矩阵A的秩,记作R(A).
定理1:R(A^T)=R(A)
注:对于n阶矩阵A,由于A的n阶子式只有一个|A|!=0时R(A)=n,当|A|=0时R(A)<n,可见可逆矩阵的秩等于矩阵的秩,不可逆的矩阵的秩小于矩阵的阶数,可逆矩阵又称为满秩矩阵。
注:矩阵的初等变换作为一种运算,其深刻意义在于它不改变矩阵的秩,,即定理2:
若A~B,则R(A)=R(B).
推论:若可逆矩阵P,Q,使得PAQ=B,则R(A)=R(B),可逆矩阵不会影响矩阵的秩。
矩阵秩的求法
(1)矩阵A的最高阶非零子式的阶数r,称为矩阵A的秩,记作R(A)=r。
(2) R(A)= r<=>A的最简形含r个非零行
矩阵的基本性质:
(1)0<=R(A[mxn])<=min|m,n|(矩阵的秩是不会超过它的行和列)
(2)R(A^T)=R(A)
(3)若A~B,则R(A)=R(B)
(4)若P,Q可逆,则R(PAQ)=R(A)
常用的矩阵的秩的性质
5)max|R(A),R(B)|<=R(A,B)<=R(A)+R(B)
(6)R(A+B)<=R(A)+R(B) (这里注意一下,R(A+B)不是R(A,B))
(7)R(AB)<=min|R(A),R(B)|
(8)A[mxn]B[nxl]=O,则R(A)+R(B)<n
线性方程组的解
定理3    n元线性方程组Ax=b(方程式的个数)
(i)无解的充分必要条件是R(A)<R(A,b)
(ii)有唯一解的充分必要条件是R(A)=R(A,b)=n(行列式的值不等于0)
(iii)有无限多解的充分必要条件是R(A)=R(A,b)<n
定理4        n元齐次线性方程组Ax=0有非零解充要条件是R(A)<n
定理5        线性方程组Ax=b有解的充分必要条件是R(A)=R(A,b)
定理6        矩阵方程AX=B有解的充要条件是R(A)=R(A,B)
定理7        设AB=C,R(AB)<=min|R(A),R(B)|

第四章 向量组的线性相关性

向量组及其线性组合

定义1:n个有次序的数a1,a2,…,a[n],所组成的数组称为n维向量;这n个数称为该向量的n个分量,第i个数a[i]称为第i个分量
向量不特殊说明,就是列向量
若干个同维数的列向量(或同维数的行向量)所组成的集合叫向量组
定义2:给定向量组A(a[1],a[2],..,a[m]),对于任何一组实数k[1],k[2],…,k[m],表达式
k[1]a[1]+k[2]a[2]+…+k[m]a[m]
称为向量组A的一个线性组合,k[1],k[2],…,k[m]称为这个线性组合的系数
向量b能由向量组A线性表示,也就是方程组
x[1]a[1]+x[2]a[2]+…+x[m]a[m]=b
定理1    向量b能由向量组A:a[1],a[2],…,a[m]线性表示的充分必要条件是矩阵A=(a[1],a[2],…,a[m])的秩等于矩阵B=(a[1],a[2],…,a[m],b)的秩
定义3:设有两个向量组A:a[1],a[2],…,a[m]及B:b[1],b[2],…,b[l],若B组中的每个向量都能由向量组A线性表示,则称向量组B能由向量组A线性表示。若向量组A与向量组B能相互线性表示,则称这两个向量组等价。
定理2    向量组B:(b[1],b[2],…,b[l])能由向量组A:A:(a[1],a[2],…,a[m])线性表示的充分必要条件是,R(A)=R(A,B)
推论:向量组A:a[1],a[2],…,a[m]与向量组B:b[1],b[2],…,b[l]等价的充分必要条件是
R(A)=R(B)=R(A,B)
其中A和B是向量组A和向量组B所构成的矩阵
定理3     向量组B:(b[1],b[2],…,b[l]能由向量组A:a[1],a[2],…,a[m]线性表示,则R(B)<=R(A)

 

 🌸🌸🌸如果大家还有不懂或者建议都可以发在评论区,我们共同探讨,共同学习,共同进步。谢谢大家! 🌸🌸🌸    

相关文章:

「3」线性代数(期末复习)

&#x1f680;&#x1f680;&#x1f680;大家觉不错的话&#xff0c;就恳求大家点点关注&#xff0c;点点小爱心&#xff0c;指点指点&#x1f680;&#x1f680;&#x1f680; 矩阵的秩 定义4:在mxn矩阵A中&#xff0c;任取k行与k列&#xff08;k<m,k<n&#xff09;,位…...

【CSDN竞赛】27期题解(Javascript)

前言 本来排名是20的&#xff0c;不过第一题有点输出bug&#xff0c;最后实际测出来又重新排名&#xff0c;刚好卡在第10。但是考试报告好像过了12小时就下载不到了&#xff0c;所以就只写题目求解的JS函数吧。 1. 幸运数字 小艺定义一个幸运数字的标准包含3条: 仅包含4或7幸…...

高压放大器在骨的逆力电研究中的应用

实验名称&#xff1a;高压放大器在骨的逆力电研究中的应用研究方向&#xff1a;生物医学测试目的&#xff1a;骨中的胶原和羟基磷灰石沿厚度分布不均匀&#xff0c;骨试样在直流电压作用下&#xff0c;内部出现传导电流引起试样内部温度升高&#xff0c;不同组分热变形不一致&a…...

思科网络部署,(0基础)入门实验,超详细

♥️作者&#xff1a;小刘在C站 ♥️个人主页&#xff1a;小刘主页 ♥️每天分享云计算网络运维课堂笔记&#xff0c;努力不一定有收获&#xff0c;但一定会有收获加油&#xff01;一起努力&#xff0c;共赴美好人生&#xff01; ♥️夕阳下&#xff0c;是最美的绽放&#xff0…...

private static final Long serialVersionUID= 1L详解

我们知道在对数据进行传输时&#xff0c;需要将其进行序列化&#xff0c;在Java中实现序列化的方式也很简单&#xff0c;可以直接通过实现Serializable接口。但是我们经常也会看到下面接这一行代码&#xff0c;private static final Long serialVersionUID 1L&#xff1b;这段代…...

若依前后端分离版集成nacos

根据公司要求&#xff0c;需要将项目集成到nacos中&#xff0c;当前项目是基于若依前后端分离版开发的&#xff0c;若依的版本为3.8.3&#xff0c;若依框架中整合的springBoot版本为2.5.14。Nacos核心提供两个功能&#xff1a;服务注册与发现&#xff0c;动态配置管理。 一、服…...

JAVA面试八股文一(mysql)

B-Tree和BTree区别共同点&#xff1b;一个节点可以有多个元素&#xff0c; 排好序的不同点&#xff1a;BTree叶子节点之间有指针&#xff0c;非叶子节点之间的数据都冗余了一份在叶子节点BTree是B-Tree 的升级mysql什么情况设置了索引&#xff0c;但无法使用a.没符合最左原则b.…...

动静态库概念及创建

注意在库中不能写main()函数。 复习gcc指令 预处理-E-> xx.i 编译 -S-> xx.s 汇编 -c-> xx.o 汇编得到的 xx.o称为目标可重定向二进制文件&#xff0c;此时的文件需要把第三方库链接进来才变成可执行程序。 gcc -o mymath main.c myadd.c mysub.c得到的mymath可以执…...

【H.264】码流解析 annexb vs avcc

H264码流解析及NALUAVCC和ANNEXB 前者是FLV容器、mp4 常用的。后者 是实时传输使用,所以是TS 一类的标准。VLC显示AVC1就是AVCC AVCC格式 也叫AVC1格式,MPEG-4格式,字节对齐,因此也叫Byte-Stream Format。用于mp4/flv/mkv, VideoToolbox。 – Annex-B格式 也叫MPEG-2 trans…...

【最优化方法】1-最优化方法介绍

文章目录1 最优化起源2 最优化发展3 运筹学在国外4 运筹学在国内5 什么是最优化&#xff1f;6 为什么要研究最优化问题&#xff1f;7 最优化问题8 最优化问题分类9 最优化研究内容理论算法应用1 最优化起源 中国古代优化思想–田忌赛马(公元前340年) 18世纪L.Euler&#xff0…...

数据结构 | 树 | 二叉树

&#x1f525;Go for it!&#x1f525; &#x1f4dd;个人主页&#xff1a;按键难防 &#x1f4eb; 如果文章知识点有错误的地方&#xff0c;请指正&#xff01;和大家一起学习&#xff0c;一起进步&#x1f440; &#x1f4d6;系列专栏&#xff1a;数据结构与算法 &#x1f52…...

笔记:使用 unbuild 搭建 JavaScript 构建系统笔记

使用 unbuild 搭建 JavaScript 构建系统jcLee95&#xff1a;https://blog.csdn.net/qq_28550263?spm1001.2101.3001.5343 邮箱 &#xff1a;291148484163.com 简介&#xff1a; 本文是笔者阅读分析 elementPlus 项目时记录的。该项目用到了一个完全没有文档和资料的工具 unbu…...

【SpringBoot3.0源码】启动流程源码解析 •下

文章目录初始化DefaultBootstrapContext开启Headless模式获取监听器并启动封装命令行参数准备环境打印Banner创建上下文容器预初始化上下文容器刷新Spring容器打印启动时间发布事件执行特定的run方法上一篇《【SpringBoot3.0源码】启动流程源码解析 • 上》&#xff0c;主要讲解…...

QT(56)-动态链接库-windows-导出变量-导出类

1.导出变量 1.1不使用_declspec(dllimport) _declspec(dllexport) 使用_declspec(dllimport) _declspec(dllexport) 1.2win32 mydllwin32 myexe 1.3win32 mydllqt myexe 2.导出类 使用_declspec(dllimport) _declspec(dllexport) 2.1不用关键…...

TCP传输文件

传输文件和传输信息的区别&#xff1a; 传输信息&#xff0c;只是一条数据&#xff0c;传输文件是多条数据传输信息传输过去一般都会显示&#xff0c;传输文件一般不会显示&#xff0c;一般只是存放在文件中传输文件需要传输&#xff0c;文件大小和文件名称&#xff08;不然不知…...

vue3:加载本地图片等静态资源

背景 在我们用 vue2 webpack 的时候&#xff0c;加载图片资源是这样用的&#xff1a; <img :src"require(/assets/test.png)" />这样打包后就会触发 file-loader 打包图片资源&#xff0c;在 dist 文件夹中就可以看到这个图片&#xff08;如果图片较小会打包…...

工作记录------数据库group_concat函数长度问题

工作记录------group_concat函数长度问题 背景&#xff1a;页面在数据展示时&#xff0c;报错&#xff0c;错误显示&#xff1a;String index out of range: -1 异常信息 java.lang.StringIndexOutOfBoundsException: String index out of range: -1at java.lang.String.sub…...

Python基础语法

1 编程环境 1.1 编译环境 pycharmpython/anaconda 1.2 环境设置 File -> settings -> Project interpreter -> 1.3 Hello world 2 条件判断 2.1 例题 【题1】输入一个年份&#xff0c;判断是否是闰年 ①能被4整除&#xff0c;但不能被100整除; ②能被400整…...

windows环境下安装Nginx及常用操作命令

windows环境下安装Nginx及常用操作命令nginx基本概述基本用途nginx安装nginx基本概述 Nginx (engine x) 是一个高性能的HTTP和反向代理web服务器。基本用途 nginx是一个轻量级高并发服务器&#xff0c;而tomcat并不是。nginx一般被用来做反向代理&#xff0c;将请求转发到应用…...

python excel数据处理?

前段时间做了个小项目&#xff0c;帮个海洋系的教授做了个数据处理的软件。基本的功能很简单&#xff0c;就是对Excel里面的一些数据进行过滤&#xff0c;统计&#xff0c;对多个表的内容进行合并等。之前没有处理Excel数据的经验&#xff0c;甚至于自己都很少用到Excel。记得《…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...