Games102 学习笔记
Games 102
P2 数据拟合
拟合数据的好坏
- 分段线性插值函数y=f1(x)y=f_1(x)y=f1(x),数据误差为0,只有C0C_0C0连续。
- 光滑插值函数y=f2(x)y=f_2(x)y=f2(x),数据误差为0,可能被Noice带歪,导致函数性质不好,预测而不可靠
- 逼近拟合函数y=f3(x)y=f_3(x)y=f3(x),允许一定的误差
三部曲方法论
- 到那找:确定某个函数集合/空间
- 找那个:度量哪个函数是好的=确定loss
- 怎么找:求解或优化
- 如果转化为系数的方程组是欠定的(有无穷多解),则修正模型:Lasso、岭回归、稀疏正则项
多项式插值定理
- 拉格朗日多项式
- 牛顿插值多项式
- 病态问题
- 数据微笑的变化可能会导致插值结果变化较大
- 函数相互抵消
- 单项式,从低次幂到高次幂占据的重要性优先级依次下降。
- 使用正交多项式基
- 结论
- 多项式插值不稳定
- 振荡现象:多项式随着插值点数的增加而摆动
多项式逼近
- 为什么做逼近
- 数据包含噪声
- 追求更紧凑的表达
- 计算简单、更稳定
- 最小二乘逼近
- argminf∈span(B)∑j=1m(f(xj)−yj)2\underset{f\in span(B)}{argmin}\sum\limits_{j=1}^{m}(f(x_j)-y_j)^2f∈span(B)argminj=1∑m(f(xj)−yj)2
函数空间及基函数
- Bernstein多项式逼近
- 基函数:bn,j=Cnjxj(1−x)n−jb_{n,j} = C_n^jx^j(1-x)^{n-j}bn,j=Cnjxj(1−x)n−j
- 优势
- 正性、权性(和为1)->凸包性
- 变差缩减性
- 递归线性求解方法
- 细分性
RBF函数插值/逼近
- RBF函数的一维形式即为Gauss函数
- gμ,σ(x)=12πe−(x−μ)22σ2g_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}gμ,σ(x)=2π1e−2σ2(x−μ)2
- RBF函数
- f(x)=b0+∑i=1nbigi(x)f(x)=b_0+\sum\limits_{i=1}^n b_ig_i(x)f(x)=b0+i=1∑nbigi(x)
从另一个角度来看拟合函数
- Gauss拟合函数
- 一般的Gauss函数表达为标准Gauss函数的形式
- gμ,σ(x)=12πe−(x−μ)22σ2=12πe−12(xσ−μσ)2=g0,1(ax+b)g_{\mu,\sigma}(x)= \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}= \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x}{\sigma}-\frac{\mu}{\sigma})^2}=g_{0,1}(ax+b)gμ,σ(x)=2π1e−2σ2(x−μ)2=2π1e−21(σx−σμ)2=g0,1(ax+b)
- a=1σ,b=μσa=\frac{1}{\sigma},b=\frac{\mu}{\sigma}a=σ1,b=σμ
- 这样就可以同时优化μ\muμ和σ\sigmaσ
- f(x)=b0+∑i=1nbigi(x)f(x) = b_0+\sum_{i=1}^{n}b_ig_i(x)f(x)=b0+∑i=1nbigi(x)->f(x)=w0+∑i=1nwig0,1(aix+bi)f(x)=w_0+\sum_{i=1}^nw_ig_{0,1}(a_ix+b_i)f(x)=w0+∑i=1nwig0,1(aix+bi)
- 一般的Gauss函数表达为标准Gauss函数的形式
P3 参数曲线拟合
多元函数
相关文章:
Games102 学习笔记
Games 102 P2 数据拟合 拟合数据的好坏 分段线性插值函数yf1(x)yf_1(x)yf1(x),数据误差为0,只有C0C_0C0连续。光滑插值函数yf2(x)yf_2(x)yf2(x),数据误差为0,可能被Noice带歪,导致函数性质不好,预…...
知识图谱基本知识点以及应用场景
近两年来,随着Linking Open Data等项目的全面展开,语义Web数据源的数量激增,大量RDF数据被发布。互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web)。在这…...
IDEA中常用的快捷键
IDEA中常用的快捷键 自动修正:ALT回车键 代码格式化:CTRLALTL 代码提示:CTRLALT空格 导入当前代码所需要的类:alt回车键 导入当前类中所需要的所有类:ctrlshifto 查看子类:ctrlh 查找类:ctrln …...
朗润国际期货招商:桥水基金四季度投资组合
桥水基金四季度投资组合 总持仓市值183.2亿美元;环比减少7.3% ishares标普500指数ETF:7.93亿占持仓4.33%环比1.14%宝洁:7.57亿占持仓4.13%环比-0.1%新兴市场core TEF-ishares:6.80亿占持仓3.71%环比0.47%强生:6.3亿占…...
Linux管道命令(pipe)全
目录 选取命令:cut、grep 传送门 排序命令:sort、wc、uniq 传送门 双向重定向:tee 字符转换命令:tr、col、join、paste、expand 传送门 划分命令:split 传送门 参数代换:xargs 传送门 关于减号…...
mybatis条件构造器(一)
mybatis条件构造器(一) 1 准备工作 1.1 建表sql语句(Emp表) SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS 0; -- ---------------------------- -- Table structure for emp -- ---------------------------- DROP TABLE IF EXISTS emp; CREATE TABLE emp (EMPNO int NOT N…...
车联网之电子围栏中ConnectStreamed应用【二十】
文章目录 1. 电子围栏中ConnectStreamed应用1.1 ConnectedStreams简介1.1.1 connect流说明1.1.2 connect流使用场景1.2 Broadcast+Connect+CoFlatmap+CoMap整合实战1.3 两点之间球面距离计算1.4 电子围栏中自定义对象实现CoFlatMap函数1. 电子围栏中ConnectStreamed应用 1.1 C…...
临时文件tempfile
临时文件tempfile 1.概述 安全地创建具有唯一名称的临时文件,以至于他们不会被那些想破坏或者窃取数据的人猜出是非常有挑战性的。tempfile 模块提供了几个安全地创建系统临时文件的方法。 TemporaryFile() 打开并返回一个未命名的临时文件, NamedTemp…...
vue3封装数值动态递增组件
vue3封装数值动态递增组件前言源码举个例子:前言 1)使用技术: vue3.2 Ts 2)组件接收参数: 参数类型意义是否可选valuenumber数值大小必填durationnumber递增动画持续时间(单位:s)…...
JavaWeb_RequestResponse
目录 一、概述 二、Request对象 1.Request继承体系 2.Request获取请求数据 ①获取请求行数据 ②获取请求头数据 ③获取请求体数据 ④获取请求参数 3.Request请求转发 三、Response 1.Response设置响应数据功能 ①响应行 ②响应头 ③响应体 2.请求重定向 3.路径问…...
C语言刷题——“C”
各位CSDN的uu们你们好呀,今天,小雅兰要巩固一下之前学过的知识,那么,最好的复习方式就是刷题啦,现在,我们就进入C语言的世界吧 从最简单的开始噢 完完全全零基础都能看懂 题目来源于牛客网 编程语言初学训…...
【刷题】搜索——BFS:城堡问题(The Castle)
目录题目代码(Flood Fill)代码(并查集)题目 题目链接 找出房间个数——>求连通块个数 最大房间——>求最大连通块 直接用flood fill算法 注意题目的输入,例如118211182111821,则代表有西、北、南墙…...
深度学习——torch相关函数用法解析
1. torch.ones() torch.ones(*sizes, outNone) → Tensor函数功能:返回一个全为1 的张量,形状由可变参数sizes定义。 参数: sizes (int…) – 整数序列,定义了输出形状 out (Tensor, optional) – 结果张量 例子: >>> …...
ubuntu 20使用kubeadm安装k8s 1.26
步骤 机器:4核8G,root账号,可访问互联网 1、更新apt apt-get update 2、安装一些基本工具 apt-get install ca-certificates curl gnupg lsb-release net-tools apt-transport-https 3、ifconfig 获取ip,hostname获取主机名&…...
低代码开发平台|制造管理-生产过程管理搭建指南
1、简介1.1、案例简介本文将介绍,如何搭建制造管理-生产过程。1.2、应用场景先填充工序信息,再设置工艺路线对应的工序;工序信息及工艺路线列表报表展示的是所有工序、工艺路线信息,可进行新增对应数据的操作。2、设置方法2.1、表…...
python对多个csv文件进行合并(表头需一致)
之前写过python对【多个Excel文件】中的【单个sheet】进行合并,参考:点我 之前也写过python对【多个Excel文件】中的【多个sheet】进行合并,参考:点我 今天再写一个python对多个csv格式的文件进行合并的小工具 但是大家切记&am…...
Salesforce Apex调用邮件模板
正常调用无模板:mail.setToAddresses(new List<String>{user.Email});//mail.setReplyTo(444298824qq.com);//mail.setCcAddresses(null);mail.setSenderDisplayName(EOP系统);mail.setSubject(EOP通知(待审批):您有未处理的…...
windows本地开发Spark[不开虚拟机]
1. windows本地安装hadoop hadoop 官网下载 hadoop2.9.1版本 1.1 解压缩至C:\XX\XX\hadoop-2.9.1 1.2 下载动态链接库和工具库 1.3 将文件winutils.exe放在目录C:\XX\XX\hadoop-2.9.1\bin下 1.4 将文件hadoop.dll放在目录C:\XX\XX\hadoop-2.9.1\bin下 1.5 将文件hadoop.dl…...
一文教你快速估计个股交易成本
交易本身对市场会产生影响,尤其是短时间内大量交易,会影响金融资产的价格。一个订单到来时的市场价格和订单的执行价格通常会有差异,这个差异通常被称为交易成本。在量化交易的策略回测部分,不考虑交易成本或者交易成本估计不合理…...
Leetcode—移除元素、删除有序数组中的重复项、合并两个有序数组
移除元素 此题简单,用双指针方法即可, 如果右指针指向的元素不等于val,它一定是输出数组的一个元素,我们就将右指针指向的元素复制到左指针位置,然后将左右指针同时右移; 如果右指针指向的元素等于 val&…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
