当前位置: 首页 > news >正文

Games102 学习笔记

Games 102

P2 数据拟合

拟合数据的好坏

  • 分段线性插值函数y=f1(x)y=f_1(x)y=f1(x),数据误差为0,只有C0C_0C0连续。
  • 光滑插值函数y=f2(x)y=f_2(x)y=f2(x),数据误差为0,可能被Noice带歪,导致函数性质不好,预测而不可靠
  • 逼近拟合函数y=f3(x)y=f_3(x)y=f3(x),允许一定的误差

三部曲方法论

  • 到那找:确定某个函数集合/空间
  • 找那个:度量哪个函数是好的=确定loss
  • 怎么找:求解或优化
    • 如果转化为系数的方程组是欠定的(有无穷多解),则修正模型:Lasso、岭回归、稀疏正则项

多项式插值定理

  • 拉格朗日多项式
  • 牛顿插值多项式
  • 病态问题
    • 数据微笑的变化可能会导致插值结果变化较大
  • 函数相互抵消
    • 单项式,从低次幂到高次幂占据的重要性优先级依次下降。
    • 使用正交多项式基
  • 结论
    • 多项式插值不稳定
    • 振荡现象:多项式随着插值点数的增加而摆动

多项式逼近

  • 为什么做逼近
    • 数据包含噪声
    • 追求更紧凑的表达
    • 计算简单、更稳定
  • 最小二乘逼近
    • argminf∈span(B)∑j=1m(f(xj)−yj)2\underset{f\in span(B)}{argmin}\sum\limits_{j=1}^{m}(f(x_j)-y_j)^2fspan(B)argminj=1m(f(xj)yj)2

函数空间及基函数

  • Bernstein多项式逼近
    • 基函数:bn,j=Cnjxj(1−x)n−jb_{n,j} = C_n^jx^j(1-x)^{n-j}bn,j=Cnjxj(1x)nj
  • 优势
    • 正性、权性(和为1)->凸包性
    • 变差缩减性
    • 递归线性求解方法
    • 细分性

RBF函数插值/逼近

  • RBF函数的一维形式即为Gauss函数
    • gμ,σ(x)=12πe−(x−μ)22σ2g_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}gμ,σ(x)=2π1e2σ2(xμ)2
  • RBF函数
    • f(x)=b0+∑i=1nbigi(x)f(x)=b_0+\sum\limits_{i=1}^n b_ig_i(x)f(x)=b0+i=1nbigi(x)

从另一个角度来看拟合函数

  • Gauss拟合函数
    • 一般的Gauss函数表达为标准Gauss函数的形式
      • gμ,σ(x)=12πe−(x−μ)22σ2=12πe−12(xσ−μσ)2=g0,1(ax+b)g_{\mu,\sigma}(x)= \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}= \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x}{\sigma}-\frac{\mu}{\sigma})^2}=g_{0,1}(ax+b)gμ,σ(x)=2π1e2σ2(xμ)2=2π1e21(σxσμ)2=g0,1(ax+b)
      • a=1σ,b=μσa=\frac{1}{\sigma},b=\frac{\mu}{\sigma}a=σ1,b=σμ
      • 这样就可以同时优化μ\muμσ\sigmaσ
      • f(x)=b0+∑i=1nbigi(x)f(x) = b_0+\sum_{i=1}^{n}b_ig_i(x)f(x)=b0+i=1nbigi(x)->f(x)=w0+∑i=1nwig0,1(aix+bi)f(x)=w_0+\sum_{i=1}^nw_ig_{0,1}(a_ix+b_i)f(x)=w0+i=1nwig0,1(aix+bi)

P3 参数曲线拟合

多元函数

相关文章:

Games102 学习笔记

Games 102 P2 数据拟合 拟合数据的好坏 分段线性插值函数yf1(x)yf_1(x)yf1​(x),数据误差为0,只有C0C_0C0​连续。光滑插值函数yf2(x)yf_2(x)yf2​(x),数据误差为0,可能被Noice带歪,导致函数性质不好,预…...

知识图谱基本知识点以及应用场景

近两年来,随着Linking Open Data等项目的全面展开,语义Web数据源的数量激增,大量RDF数据被发布。互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web)。在这…...

IDEA中常用的快捷键

IDEA中常用的快捷键 自动修正:ALT回车键 代码格式化:CTRLALTL 代码提示:CTRLALT空格 导入当前代码所需要的类:alt回车键 导入当前类中所需要的所有类:ctrlshifto 查看子类:ctrlh 查找类:ctrln …...

朗润国际期货招商:桥水基金四季度投资组合

桥水基金四季度投资组合 总持仓市值183.2亿美元;环比减少7.3% ishares标普500指数ETF:7.93亿占持仓4.33%环比1.14%宝洁:7.57亿占持仓4.13%环比-0.1%新兴市场core TEF-ishares:6.80亿占持仓3.71%环比0.47%强生:6.3亿占…...

Linux管道命令(pipe)全

目录 选取命令:cut、grep 传送门 排序命令:sort、wc、uniq 传送门 双向重定向:tee 字符转换命令:tr、col、join、paste、expand 传送门 划分命令:split 传送门 参数代换:xargs 传送门 关于减号…...

mybatis条件构造器(一)

mybatis条件构造器(一) 1 准备工作 1.1 建表sql语句(Emp表) SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS 0; -- ---------------------------- -- Table structure for emp -- ---------------------------- DROP TABLE IF EXISTS emp; CREATE TABLE emp (EMPNO int NOT N…...

车联网之电子围栏中ConnectStreamed应用【二十】

文章目录 1. 电子围栏中ConnectStreamed应用1.1 ConnectedStreams简介1.1.1 connect流说明1.1.2 connect流使用场景1.2 Broadcast+Connect+CoFlatmap+CoMap整合实战1.3 两点之间球面距离计算1.4 电子围栏中自定义对象实现CoFlatMap函数1. 电子围栏中ConnectStreamed应用 1.1 C…...

临时文件tempfile

临时文件tempfile 1.概述 安全地创建具有唯一名称的临时文件,以至于他们不会被那些想破坏或者窃取数据的人猜出是非常有挑战性的。tempfile 模块提供了几个安全地创建系统临时文件的方法。 TemporaryFile() 打开并返回一个未命名的临时文件, NamedTemp…...

vue3封装数值动态递增组件

vue3封装数值动态递增组件前言源码举个例子:前言 1)使用技术: vue3.2 Ts 2)组件接收参数: 参数类型意义是否可选valuenumber数值大小必填durationnumber递增动画持续时间(单位:s)…...

JavaWeb_RequestResponse

目录 一、概述 二、Request对象 1.Request继承体系 2.Request获取请求数据 ①获取请求行数据 ②获取请求头数据 ③获取请求体数据 ④获取请求参数 3.Request请求转发 三、Response 1.Response设置响应数据功能 ①响应行 ②响应头 ③响应体 2.请求重定向 3.路径问…...

C语言刷题——“C”

各位CSDN的uu们你们好呀,今天,小雅兰要巩固一下之前学过的知识,那么,最好的复习方式就是刷题啦,现在,我们就进入C语言的世界吧 从最简单的开始噢 完完全全零基础都能看懂 题目来源于牛客网 编程语言初学训…...

【刷题】搜索——BFS:城堡问题(The Castle)

目录题目代码(Flood Fill)代码(并查集)题目 题目链接 找出房间个数——>求连通块个数 最大房间——>求最大连通块 直接用flood fill算法 注意题目的输入,例如118211182111821,则代表有西、北、南墙…...

深度学习——torch相关函数用法解析

1. torch.ones() torch.ones(*sizes, outNone) → Tensor函数功能:返回一个全为1 的张量,形状由可变参数sizes定义。 参数: sizes (int…) – 整数序列,定义了输出形状 out (Tensor, optional) – 结果张量 例子: >>> …...

ubuntu 20使用kubeadm安装k8s 1.26

步骤 机器:4核8G,root账号,可访问互联网 1、更新apt apt-get update 2、安装一些基本工具 apt-get install ca-certificates curl gnupg lsb-release net-tools apt-transport-https 3、ifconfig 获取ip,hostname获取主机名&…...

低代码开发平台|制造管理-生产过程管理搭建指南

1、简介1.1、案例简介本文将介绍,如何搭建制造管理-生产过程。1.2、应用场景先填充工序信息,再设置工艺路线对应的工序;工序信息及工艺路线列表报表展示的是所有工序、工艺路线信息,可进行新增对应数据的操作。2、设置方法2.1、表…...

python对多个csv文件进行合并(表头需一致)

之前写过python对【多个Excel文件】中的【单个sheet】进行合并,参考:点我 之前也写过python对【多个Excel文件】中的【多个sheet】进行合并,参考:点我 今天再写一个python对多个csv格式的文件进行合并的小工具 但是大家切记&am…...

Salesforce Apex调用邮件模板

正常调用无模板&#xff1a;mail.setToAddresses(new List<String>{user.Email});//mail.setReplyTo(444298824qq.com);//mail.setCcAddresses(null);mail.setSenderDisplayName(EOP系统);mail.setSubject(EOP通知&#xff08;待审批&#xff09;&#xff1a;您有未处理的…...

windows本地开发Spark[不开虚拟机]

1. windows本地安装hadoop hadoop 官网下载 hadoop2.9.1版本 1.1 解压缩至C:\XX\XX\hadoop-2.9.1 1.2 下载动态链接库和工具库 1.3 将文件winutils.exe放在目录C:\XX\XX\hadoop-2.9.1\bin下 1.4 将文件hadoop.dll放在目录C:\XX\XX\hadoop-2.9.1\bin下 1.5 将文件hadoop.dl…...

一文教你快速估计个股交易成本

交易本身对市场会产生影响&#xff0c;尤其是短时间内大量交易&#xff0c;会影响金融资产的价格。一个订单到来时的市场价格和订单的执行价格通常会有差异&#xff0c;这个差异通常被称为交易成本。在量化交易的策略回测部分&#xff0c;不考虑交易成本或者交易成本估计不合理…...

Leetcode—移除元素、删除有序数组中的重复项、合并两个有序数组

移除元素 此题简单&#xff0c;用双指针方法即可&#xff0c; 如果右指针指向的元素不等于val&#xff0c;它一定是输出数组的一个元素&#xff0c;我们就将右指针指向的元素复制到左指针位置&#xff0c;然后将左右指针同时右移&#xff1b; 如果右指针指向的元素等于 val&…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

Java中HashMap底层原理深度解析:从数据结构到红黑树优化

一、HashMap概述与核心特性 HashMap作为Java集合框架中最常用的数据结构之一&#xff0c;是基于哈希表的Map接口非同步实现。它允许使用null键和null值&#xff08;但只能有一个null键&#xff09;&#xff0c;并且不保证映射顺序的恒久不变。与Hashtable相比&#xff0c;Hash…...