当前位置: 首页 > news >正文

人工智能中(Pytorch)框架下模型训练效果的提升方法

大家好,我是微学AI,今天给大家介绍一下人工智能中(Pytorch)框架下模型训练效果的提升方法。随着深度学习技术的快速发展,越来越多的应用场景需要建立复杂的、高精度的深度学习模型。为了实现这些目标,必须采用一系列复杂的技术来提高训练效果。

一、为什么要研究模型训练效果的提升方法

在过去,训练一个深度神经网络往往需要大量的时间和计算资源,而且结果也可能不如人意。但是随着新的技术被引入,训练深度学习模型的效率和准确度都得到了极大的提升。

例如,学习率调整法动态调整学习率,应用在训练过程中,通过降低学习率来让模型更好地收敛。Batch Normalization技术能够使神经网络中的每一层都具有相似的分布,从而加速收敛和提高训练准确性;Dropout 技术可以防止过拟合,从而提高模型的泛化能力;数据增强技术可以增加训练样本数量并提高模型的泛化性能;迁移学习可以通过利用已有的模型或预训练的模型来解决新问题,从而节省训练时间并更快地达到较高的准确性。

同时,随着深度学习应用的广泛普及和深度学习模型的复杂化,提高训练效果的重要性也越来越凸显。训练效果好的模型可以更准确地预测未知数据,更好地满足实际应用需求。因此,应用复杂技术来提高训练效果已成为深度学习领域的研究热点,同时也是实现深度学习应用的必要手段。

二、模型训练效果的提升方法具体案例

在训练深度学习模型过程中,复杂技术可以应用于提高训练效果,下面我将举几个案例:学习率调整、批量归一化、权重正则化、梯度剪裁。

1. 学习率调整

动态调整学习率,应用在训练过程中,通过降低学习率来让模型更好地收敛。以PyTorch框架为例

import torch
import torch.optim as optim
from torchvision import datasets, transforms# 数据加载
train_dataset = datasets.MNIST(root=‘./data’, train=True, transform=transforms.ToTensor())train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)# 定义模型
model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)# 训练
for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 2828)optimizer.zero_grad()output = model(data)loss = torch.nn.functional.cross_entropy(output, target)loss.backward()optimizer.step()# 调整学习率scheduler.step()

 2. 批量归一化(Batch Normalization)

在每一层之间添加一个 batch normalization 层,将输入进行标准化(归一化)处理,有助于加速训练速度。

import torch# 定义模型并添加批量归一化层,这里以两层线性层为例
model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.BatchNorm1d(1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)

3. 权重正则化

常见的有 L1 和 L2 正则化,帮助限制模型参数的范数(和 LASSO/Ridge 最小二乘回归类似)。可以有效限制模型复杂度,以减小过拟合的风险。


import torch.optim as optim
from torch.utils.data import Dataset, DataLoader# 定义模型
model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)# 模型的参数
parameters = model.parameters()# 设置优化器并添加L2正则化
optimizer = optim.SGD(parameters, lr=0.001, weight_decay=1e-5)

4. 梯度剪裁

在训练过程中,梯度可能会变得很大,这可能导致梯度爆炸的问题。梯度剪裁可以避免梯度过大。

import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, transformstrain_dataset = datasets.MNIST(root=‘./data’, train=True, transform=transforms.ToTensor())train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)
optimizer = optim.SGD(model.parameters(), lr=0.001)# 训练循环
for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 2828)optimizer.zero_grad()output = model(data)loss = torch.nn.functional.cross_entropy(output, target)loss.backward()# 梯度剪裁torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)optimizer.step()

我举了以上神经网络训练过程中一些运用技巧,可以应用在模型训练过程中提高训练效果。更多内容希望大家持续关注。

相关文章:

人工智能中(Pytorch)框架下模型训练效果的提升方法

大家好,我是微学AI,今天给大家介绍一下人工智能中(Pytorch)框架下模型训练效果的提升方法。随着深度学习技术的快速发展,越来越多的应用场景需要建立复杂的、高精度的深度学习模型。为了实现这些目标,必须采用一系列复杂的技术来提…...

树莓派CSI摄像头使用python调用opencv库函数进行运动检测识别

目录 一、完成摄像头的调用 二、利用python调用opencv库函数对图像进行处理 2.1 图像处理大体流程 2.2 opencv调用函数的参数以及含义 2.2.1 ret, img cap.read() 读取帧图像 2.2.2 cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 灰度图像 2.2.3 gray_diff_img cv2.absdiff(g…...

Parameters(in)、Parameters(out) and Parameters(inout)

0前言 参数类型(Parameters)指的是函数参数在调用时所具有的性质,从而对函数的调用方式产生影响。在 C 语言中,存在三种不同类型的函数参数:Parameters(in)、Parameters(out) 和 Parameters(inout) 1定义 Parameter…...

jstat命令查看jvm内存情况及GC内存变化

命令格式 jstat [Options] pid [interval] [count] 参数说明: Options,选项,一般使用 -gc、-gccapacity查看gc情况 pid,VM的进程号,即当前运行的java进程号 interval,间隔时间(按该时间频率自动刷新当前内存…...

java 图形化小工具Abstract Window Toolit :画笔Graphics,画布Canvas(),弹球小游戏

画笔Graphics Java中提供了Graphics类,他是一个抽象的画笔,可以在Canvas组件(画布)上绘制丰富多彩的几何图和位图。 Graphics常用的画图方法如下: drawLine(): 绘制直线drawString(): 绘制字符串drawRect(): 绘制矩形drawRoundRect(): 绘制…...

HCIA-RS实验-STP和RSTP(1)

这篇文章开始前,先简单说下这2个协议; 本文介绍了STP和RSTP的基本原理、优缺点以及应用场景。STP和RSTP都是生成树协议,主要作用于避免网络中的环路,保证数据包能够正常转发。在实际应用中,需要根据实际情况选择合适的…...

Leetcodes刷题之删除链表的倒数N个结点和删除链表的中间的结点

吾心信其可行,则移山填海之难,终有成功之日。 --孙中山 目录 🍉一.删除链表的倒数N个结点 🌻1.双指针 🍁2.求链表的长度 🌸二.删除链表的中间的结点 🍉一.删除链…...

Java-数据结构-并查集<二>

一.并查集的简单介绍 二. 并查集的主要构成和实现方式 三.HashMap模板和数组模板 由于在下文的模板基本一致,不再每次都罗列,大体的模板如下,若有错误可以在leetcode找到对应的题目解答,已经附上连接。 HashMap class UnionFi…...

JSP网上教学资源共享系统(源代码+论文)

通过网上教学资源共享系统的建设,完成了对于操作系统课程的远程化授课。可以使学生不受时间空间的限制,通过网络对于这门课程进行学习。建立起了基于B/C的网络化教学系统。本网站采用当前最流行的JSP网络编程技术,可以实现数据的高效、动态、…...

QT C++入门学习(1) QT Creator安装和使用

Qt官方下载 Qt 官网有一个专门的资源下载网站,所有的开发环境和相关工具都可以从这里下载,具体地址是:http://download.qt.io/ 进入链接后,是一个文件目录,依次进入这个路径:archive/qt/5.12/5.12.9/qt-o…...

UE动画状态机的事件触发顺序测试

正常A状态过渡到B状态的事件顺序: 整个流程为: 调用B状态的On Become Relevant事件调用B状态的On Update事件调用A状态的Left State Event事件调用B状态的Entered State Event事件调用B状态的Start Transition Event事件调用B状态的End Transition Even…...

数学建模的搜索技巧

你真的会使用“度娘”吗?是不是在查找所需要的东西的时候,搜出来的信息价值并不是很大,跟着北海老师学习,如何更高效的使用百度去查询自己想要的,有用的资料! 搜索技巧 完全匹配搜索 : 查询词的外边加上双…...

学成在线笔记+踩坑(10)——课程搜索、课程发布时同步索引库。

导航: 【黑马Java笔记踩坑汇总】JavaSEJavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线牛客面试题_java黑马笔记 目录 1 【检索模块】需求分析 1.1 全文检索介绍 1.2 业务流程 1.2.1、课程发布时索引库里新增一条记录 1.2.2、课程搜索 2 准…...

某应用虚拟化系统远程代码执行

漏洞简介 微步在线漏洞团队通过“X漏洞奖励计划”获取到瑞友天翼应用虚拟化系统远程代码执行漏洞情报(0day),攻击者可以通过该漏洞执行任意代码,导致系统被攻击与控制。瑞友天翼应用虚拟化系统是基于服务器计算架构的应用虚拟化平台,它将用户…...

solaris-Oracle11g于linux-mysql相连

Oracle11g(solaris64sparc)mysql(linux)实验 此实验目的,实现公司ebs R12 连mysql上的短信平台.预警和提示ebs中信息, 一,环境 主机名 ip 平台 数据库 dbname ebs234 192.168.1.234 …...

大厂齐出海:字节忙种草,网易爱社交

配图来自Canva可画 随着国内移动互联网红利逐渐触顶,互联网市场日趋饱和,国内各互联网企业之间的竞争便愈发激烈起来。在此背景下,广阔的海外市场就成为了腾讯、阿里、字节、京东、拼多多、百度、网易、快手、B站等互联网公司关注和争夺的重…...

几个实用的正则表达式

1到100之间的正整数正则 表达式:^[1-9]\d?$|^100$ 解释: ^表示匹配字符串开始位置 [1-9]表示数字1-9中的任意一个 \d表示任意一个数字 ?表示前面一个字符或子表达式出现0或1次 $表示匹配字符串结束位置 |表示或 最终的解释为:匹配满…...

python实战应用讲解-【numpy数组篇】常用函数(八)(附python示例代码)

目录 Python Numpy MaskedArray.cumprod()函数 Python Numpy MaskedArray.cumsum()函数 Python Numpy MaskedArray.default_fill_value()函数 Python Numpy MaskedArray.flatten()函数 Python Numpy MaskedArray.masked_equal()函数 Python Numpy MaskedArray.cumprod()函…...

Speech and Language Processing-之N-gram语言模型

正如一句老话所说,预测是困难的,尤其是预测未来。但是,如何预测一些看起来容易得多的事情,比如某人接下来要说的几句话后面可能跟着哪个单词。 希望你们大多数人都能总结出一个很可能的词是in,或者可能是over&#x…...

【AI】Python 安装时启用长路径支持

文章目录 场景:解释:关于文件长路径:计算方法: 场景: Python 安装时,会出现 Disable path length limit 的提示。 解释: 在 Windows 操作系统中,文件路径的长度是有限制的。在早期…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

Android15默认授权浮窗权限

我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

SpringTask-03.入门案例

一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...