【学习笔记】CF613E Puzzle Lover
这题本质上还是数据结构。
首先看到这个 2 × n 2\times n 2×n的网格图就很容易想到分治。我们还是考虑把要统计的东西变得可视化,一条路径要么穿过中线一次,那么我们可以将两边的串拼起来得到答案;要么穿过中线两次,考虑其中一边的路径是固定的,那么我们枚举两个端点再判断一下和原串是否匹配的上就做完了。那么考虑预处理出 d p i , j , 0 / 1 , 0 / 1 dp_{i,j,0/1,0/1} dpi,j,0/1,0/1表示从位置 ( 1 / 2 , i ) (1/2,i) (1/2,i)开始,匹配长度为 j j j,向左/右走的方案数,这事实上非常好转移,可以自己编一下。当然可能还要把串正着和倒着处理一边,总之挺麻烦的。
将网格图翻转后做两次即可得到答案。求 L c p Lcp Lcp可以用暴力 d p dp dp代替。事实上也并不需要分治。注意不要算重。
细节题,贼容易写挂。
复杂度 O ( n 2 ) O(n^2) O(n2)。
#include<bits/stdc++.h>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define inf 0x3f3f3f3f
#define db double
#define cpx complex<db>
using namespace std;
const int mod=1e9+7;
const int N=2005;
int n,K,Right[2][N][N],Left[2][N][N],dpl[2][N][N],res;
string s[2],str;
void add(int &x,int y){x=(x+y)%mod;
}
void solve(){for(int i=0;i<2;i++){for(int j=n-1;j>=0;j--){for(int k=0;k<K;k++){Right[i][j][k]=(s[i][j]!=str[k])?0:((j!=n-1&&k>=1)?(Right[i][j+1][k-1]+1):1);}}}for(int i=0;i<2;i++){for(int j=0;j<n;j++){for(int k=0;k<K;k++){Left[i][j][k]=(s[i][j]!=str[k])?0:((j>=1&&k>=1)?(Left[i][j-1][k-1]+1):1);}}}memset(dpl,0,sizeof dpl);for(int i=0;i<2;i++){for(int j=0;j<n;j++){if(s[i][j]==str[0]){dpl[i][j][0]=1;}}}//fixedfor(int i=0;i<n;i++){for(int j=i;j<n;j++){for(int k=0;k<2;k++){//strangeif(Left[k][j][2*(j-i+1)-1]>=j-i+1&&Right[k^1][i][j-i]>=j-i+1){add(dpl[k][j][2*(j-i+1)-1],1);}}}}for(int k=1;k<K;k++){for(int i=0;i<2;i++){for(int j=0;j<n;j++){if(s[i][j]==str[k]){if(j)add(dpl[i][j][k],dpl[i][j-1][k-1]);if(s[i^1][j]==str[k-1]){if(j&&k-2>=0)add(dpl[i][j][k],dpl[i^1][j-1][k-2]);}}}}}
}
void getans(){//fixedfor(int i=0;i<2;i++){for(int j=0;j<n;j++){add(res,dpl[i][j][K-1]);}}for(int i=1;i<n;i++){for(int j=i+1;j<n;j++){for(int k=0;k<2;k++){if(Right[k][i][K-1]>=j-i+1&&K-(j-i+2)>=0&&Left[k^1][j][K-(j-i+2)]>=j-i+1&&K-2*(j-i+1)-1>=0){add(res,dpl[k^1][i-1][K-2*(j-i+1)-1]);}}}}
}
int main(){ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);cin>>s[0]>>s[1]>>str,n=s[0].size(),K=str.size();//fixedif(K==1){for(int i=0;i<2;i++){for(int j=0;j<n;j++){if(s[i][j]==str[0]){add(res,1);}}}cout<<res;return 0;}if(K==2){for(int i=0;i<2;i++){for(int j=0;j<n-1;j++){if(s[i][j]==str[0]&&s[i][j+1]==str[1]){add(res,1);}if(s[i][j+1]==str[0]&&s[i][j]==str[1]){add(res,1);}}}for(int i=0;i<2;i++){for(int j=0;j<n;j++){if(s[i][j]==str[0]&&s[i^1][j]==str[1]){add(res,1);}}}cout<<res;return 0;}//fixedsolve();getans();//fixedswap(s[0],s[1]),reverse(s[0].begin(),s[0].end()),reverse(s[1].begin(),s[1].end());solve();getans();cout<<res<<"\n";
}
相关文章:
【学习笔记】CF613E Puzzle Lover
这题本质上还是数据结构。 首先看到这个 2 n 2\times n 2n的网格图就很容易想到分治。我们还是考虑把要统计的东西变得可视化,一条路径要么穿过中线一次,那么我们可以将两边的串拼起来得到答案;要么穿过中线两次,考虑其中一边的…...
软考报名资格审核要多久?证明材料要哪些?
软考报名资格审核要多久? 一般来说,软考资格审核时间不超过1个工作日。当然,每个地区的具体情况都不一样。有些地区估计需要1-3个工作日。总之,为了顺利成功报名,大家应尽快报名,不要拖到最后一天。 软考…...
2023-04-27 polardbx-LSM-tree的Parallel Recovery性能优化
背景 数据库的Crash Recovery时长关系到数据库的可用性SLA、故障止损时间、升级效率等多个方面。本文描述了针对X-Engine数据库存储引擎的一种Crash Recovery优化手段,在典型场景下可以显著缩短数据库实例的故障恢复时间,提升用户使用感受。 当前面临的问题 X-Engine是阿里…...
创作纪念日让 AI 与我共同记录下今天 — 【第五周年、1460天】
今天正是五一,收到一条消息? 五一还要我加班 😏? 喔,原来是 CSDN 给我发的消息呀!我在 CSDN 不知不觉已经开启第五周年啦! 目录 1.机缘2.收获3.日常4.我与 AI 的“合作”part Ipart II Super al…...
枚举法计算24点游戏
# 请在此处编写代码 # 24点游戏 import itertools# 计算24点游戏代码 def twentyfour(cards):"""(1)itertools.permutations(可迭代对象):通俗地讲,就是返回可迭代对象的所有数学全排列方式。itertools.permutations("1118") -…...
@Cacheable注解
Cacheable注解是Spring框架中提供的一种缓存技术, 用于标记一个方法的返回值可以被缓存起来,当再次调用该方法时,如果缓存中已经存在缓存的结果,则直接从缓存中获取结果而不是再次执行该方法,从而提高系统的性能和响应…...
CentOS分区挂载 fdisk、parted方式解析
1 介绍 在linux中,通常会将持久化数据保存到硬盘当中,但是硬盘一把会比较大,因此我们为了方便管理,会将一个硬盘分成多个逻辑硬盘,称之为分区。 为了能够让分区中的文件使得能让操作系统处理,则需要对分区…...
BuildKit
介绍 BuildKit是一个现代化的构建系统,主要用于构建和打包容器镜像。它是Docker官方的构建引擎,支持构建多阶段构建、缓存管理、并行化构建、多平台构建等功能。BuildKit还支持多种构建语法和格式,包括Dockerfile、BuildKit Build Specifica…...
c++ 11标准模板(STL) std::vector (二)
定义于头文件 <vector> template< class T, class Allocator std::allocator<T> > class vector;(1)namespace pmr { template <class T> using vector std::vector<T, std::pmr::polymorphic_allocator<T>>; }(2)(C17…...
Python 循环技巧
目录 在字典中循环时,用 items() 方法可同时取出键和对应的值: 在序列中循环时,用 enumerate() 函数可以同时取出位置索引和对应的值: 同时循环两个或多个序列时,用 zip() 函数可以将其内的元素一一匹配:…...
【Java笔试强训 7】
🎉🎉🎉点进来你就是我的人了博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔🤺🤺🤺 目录 一、选择题 二、编程题 🔥Fibona…...
工作7年的程序员,明白了如何正确的“卷“
背景 近两年,出台和落地的反垄断法,明确指出要防止资本无序扩张。 这也就导致现在的各大互联网公司,不能再去染指其他已有的传统行业,只能专注自己目前存量的这些业务。或者通过技术创新,开辟出新的行业。 但创新这…...
数学建模——查数据
如果选择C题的小伙伴常常需要查找一些数据,那么这些数据一般都可以从哪里找到呢? 常用的查数据平台 优先在知网、谷歌学术等平台搜索国家统计局 最全面,月度季度年度,各地区各部门各行业,包罗万象 https://data.stat…...
PAT A1019 General Palindromic Number
1019 General Palindromic Number 分数 20 作者 CHEN, Yue 单位 浙江大学 A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are pa…...
ChatGPT会颠覆SEO内容创作吗
近几年 AI 的发展日新月异。除了搜索算法本身大规模应用人工智能,我也一直关注着 AI 用于写作的进展。 上篇关于 Google 有用内容更新的帖子还在说,高质量内容创作是 SEO 最难的事之一,对某些网站来说,如果能有工具帮助ÿ…...
Maven私服搭建
为什么要搭建私服 通常在maven项目的pom.xml文件中引入了某个依赖包之后,maven首先会去本地仓库去搜索,本地仓库搜索不到会去maven的配置文件settings.xml中配置的maven镜像地址去找,比如: <mirrors><!-- mirror| Specif…...
Ajax和Json综合案例
1. 查询所有 创建brand.html,使用axios发送请求,其中查询一般采用get的请求方式 <script src"js/axios-0.18.0.js"></script><script>//1. 当页面加载完成后,发送ajax请求window.onload function () {//2. 发送ajax请求axi…...
【genius_platform软件平台开发】第九十四讲:int64_t的格式化问题(lld和PRId64)
问题起因是在进行上位机软件优化的工作安排时,同事对unsigned long long 类型的时间戳进行了格式化输出优化,从%ull优化为了% PRIu64,我进行代码合并请求处理的时候突然感觉这个可以仔细查一下。查阅到的相关资料如下: * 1. int6…...
多模态之clip
论文:Learning Transferable Visual Models From Natural Language Supervision Github:https://github.com/OpenAI/CLIP OpenAI出品 论文通过网络爬取4亿(image, text)对,使用对比学习的方法训练得到clip(Contrastive Languag…...
Lombok常用注解
文章目录 一、简介二、Idea中配置三、Maven中配置四、相应注解1、Data2、RequiredArgsConstructor3、AllArgsConstructor4、NoArgsConstructor5、Getter/Setter:6、ToString7、EqualsAndHashCode8、Builder9、NonNull10、Log11、Slf4j12、Log4j213、SneakyThrows14、Cleanup15、…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...
