当前位置: 首页 > news >正文

使用pandas、xlrd、openpyxl读取Excel

首先创建一个示例Excel文件example.xlsx,其中包含以下数据:

NameAgeGender
Alice28Female
Bob35Male
Charlie42Male
Dave29Male
Eve31Female

安装

pip install pandas
pip install xlrd
pip install openpyxl

方法一:使用Pandas库

  • 使用Pandas库来读取Excel文件并将其转换为字典格式。这是最简单和最常用的方法。

    import pandas as pd# 读取Excel文件
    excel_file = 'example.xlsx'
    sheet_name = 'Sheet1'# 使用Pandas读取Excel文件
    data_frame = pd.read_excel(excel_file, sheet_name=sheet_name)# 将数据转换为字典格式
    data_dict = data_frame.to_dict(orient='records')print(data_dict)
    
  • 输出结果:

    [{'Name': 'Alice', 'Age': 28, 'Gender': 'Female'}, {'Name': 'Bob', 'Age': 35, 'Gender': 'Male'}, {'Name': 'Charlie', 'Age': 42, 'Gender': 'Male'}, {'Name': 'Dave', 'Age': 29, 'Gender': 'Male'}, {'Name': 'Eve', 'Age': 31, 'Gender': 'Female'}]
    

方法二:使用xlrd库

  • 示例代码

    import xlrd# 读取Excel文件
    excel_file = 'example.xlsx'
    sheet_name = 'Sheet1'# 使用xlrd读取Excel文件
    workbook = xlrd.open_workbook(excel_file)
    sheet = workbook.sheet_by_name(sheet_name)# 将数据转换为字典格式
    data_dict = []
    for row in range(1, sheet.nrows):row_data = {}for col in range(sheet.ncols):cell_value = sheet.cell_value(row, col)row_data[sheet.cell_value(0, col)] = cell_valuedata_dict.append(row_data)print(data_dict)
    
  • 输出结果:

    [{'Name': 'Alice', 'Age': 28.0, 'Gender': 'Female'}, {'Name': 'Bob', 'Age': 35.0, 'Gender': 'Male'}, {'Name': 'Charlie', 'Age': 42.0, 'Gender': 'Male'}, {'Name': 'Dave', 'Age': 29.0, 'Gender': 'Male'}, {'Name': 'Eve', 'Age': 31.0, 'Gender': 'Female'}]
    

方法三:使用openpyxl库

  • 示例代码

    from openpyxl import load_workbook# 读取Excel文件
    excel_file = 'example.xlsx'
    sheet_name = 'Sheet1'# 使用openpyxl读取Excel文件
    workbook = load_workbook(filename=excel_file)
    worksheet = workbook[sheet_name]# 将数据转换为字典格式
    data_dict = []
    for row in worksheet.iter_rows(min_row=2, max_col=worksheet.max_column, values_only=True):row_data = {}for i, value in enumerate(row):row_data[worksheet.cell(row=1, column=i+1).value] = valuedata_dict.append(row_data)print(data_dict)
    
  • 输出结果:

    [{'Name': 'Alice', 'Age': 28.0, 'Gender': 'Female'}, {'Name': 'Bob', 'Age': 35.0, 'Gender': 'Male'}, {'Name': 'Charlie', 'Age': 42.0, 'Gender': 'Male'}, {'Name': 'Dave', 'Age': 29.0, 'Gender': 'Male'}, {'Name': 'Eve', 'Age': 31.0, 'Gender': 'Female'}]
    

总结

  • 可以看出使用Pandas库的方法最为简单,而使用xlrd和openpyxl库则需要手动处理每一行的数据。

  • 需要注意的是,以上示例代码仅适用于Excel文件中只有一个工作表的情况。如果Excel文件中有多个工作表,需要指定要读取的工作表。

  • 如果需要处理大量的Excel文件,建议使用Pandas库,因为它能够自动处理大部分数据类型,并且具有优秀的性能。如果只需要处理少量的Excel文件,可以考虑使用xlrd或openpyxl库。

相关文章:

使用pandas、xlrd、openpyxl读取Excel

首先创建一个示例Excel文件example.xlsx,其中包含以下数据: NameAgeGenderAlice28FemaleBob35MaleCharlie42MaleDave29MaleEve31Female 安装 pip install pandas pip install xlrd pip install openpyxl方法一:使用Pandas库 使用Pandas库来…...

Java面试题接口

Collection接口 List接口 迭代器 Iterator 是什么? Iterator 接口提供遍历任何 Collection 的接口。我们可以从一个 Collection 中使用迭代器方法来获取迭 代器实例。迭代器取代了 Java 集合框架中的 Enumeration,迭代器允许调用者在迭代过程中移…...

内存取证小练习-基础训练

这是题目和wolatility2.6的链接 链接:https://pan.baidu.com/s/1wNYJOjLoXMKqbGgpKOE2tg?pwdybww 提取码:ybww --来自百度网盘超级会员V4的分享 压缩包很小,题目也比较简单基础,可以供入门使用 1:Which volatility…...

【Android -- 开源库】数据库 Realm 的基本使用

简介 Realm 是一个 MVCC (多版本并发控制)数据库,由Y Combinator公司在2014年7月发布一款支持运行在手机、平板和可穿戴设备上的嵌入式数据库,目标是取代 SQLite。Realm 本质上是一个嵌入式数据库,他并不是基于 SQLit…...

基于el-input的数字范围输入框

数字范围组件 在做筛选时可能会出现数字范围的筛选,例如:价格、面积,但是elementUI本身没有自带的数字范围组件,于是进行了简单的封装,不足可自行进行优化 满足功能: 最小值与最大值的相关约束&#xff0…...

车联网OTA安全实践

摘要: 近年来,智能汽车已成为全球汽车产业发展的战略方向,汽车技术与工程核心逐渐从传统硬件层面转移到软件层面,汽车行业已经踏上了软件定义汽车(SDV)的变革之路。 在SDV的大趋势下,汽车零部件…...

智融合·共未来丨智合同携手百融云创打造合同智能化应用服务平台

人工智能技术是当今社会的热议话题之一。近年来,众多企业在人工智能领域持续布局,相关技术已在社会生产各环节极大地提高了生产效率。如果把过去信息技术产业的发展比喻为“手工时代”,那么人工智能技术的出现则将把信息技术产业推向“自动化…...

iOS ARC

iOS ARC是自动引用计数的缩写,是一种内存管理技术。它是由苹果公司在iOS 5中引入的,用于自动管理对象的内存生命周期。在ARC中,开发者不再需要手动管理对象的内存,这大大简化了开发过程,同时也减少了内存泄漏的风险。 …...

【代码随想录】刷题Day13

1.deque使用 239. 滑动窗口最大值 deque的介绍在C语法(12)---- 模拟实现queue和stack_哈里沃克的博客-CSDN博客 其实deque就是一个两头都能进出数据的数据结构,我们之所以使用它就是因为他的结构特点就是两边出,这样我们既可以判…...

playwright连接已有浏览器操作

文章目录 playwright连接已有浏览器操作前置准备打开本地已有缓存的Chrome(理解)指定端口打开浏览器连接指定端口已启动浏览器(推荐) playwright连接已有浏览器操作 前置准备 pip install playwright # 安装playwright的python…...

深度学习模型评估简单介绍

文章目录 深度学习模型评估介绍训练集、验证集和测试集应用场景准确率和误差率精确率和召回率F1 分数ROC 曲线和 AUC总结 深度学习模型评估介绍 本教程将介绍深度学习模型的基本评估方法及它们的应用场景。我们主要关注监督学习模型。 训练集、验证集和测试集 在深度学习中&…...

PyTorch——利用Accelerate轻松控制多个CPU/GPU/TPU加速计算

PyTorch——利用Accelerate轻松控制多个CPU/GPU/TPU加速计算 前言官方示例单个程序内控制多个CPU/GPU/TPU简单说一下设备环境导包加载数据 FashionMNIST创建一个简单的CNN模型训练函数-只包含训练训练函数-包含训练和验证训练 多个服务器、多个程序间控制多个CPU/GPU/TPU参考链…...

4个很多人都不知道的现代JavaScript技巧

JavaScript在不断的进化和升级,越来越多的新特性让我们的代码变得更加简洁。因此,今天这篇文章,我将跟大家分享 4 个不常用的 JavaScript 运算符。让我们一起研究它们。 1.可选的链接运算符 这个功能非常好用,它可以防止我的代码…...

【Java笔试强训 19】

🎉🎉🎉点进来你就是我的人了博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔🤺🤺🤺 目录 一、选择题 二、编程题 🔥汽水瓶 …...

JPA整合达梦数据库

陈老老老板🦸 👨‍💻本文专栏:国产数据库-达梦数据库(主要讲一些达梦数据库相关的内容) 👨‍💻本文简述:本文讲一下SpringBoot整合JPA与达梦数据库,就是简单&…...

制药专业转行软件测试,带我的师傅在这干了两年半,最终还是跑路了......

故事的开始 最近这几天有点忧伤,因为带我的师傅要跑路了,嗯,应该说已经跑路了,他是制药专业的,已经在这个公司干了两年半了。其实今年3月份的时候他就跟我说他要跑路了,然后我说,要不你先把五一…...

「SQL面试题库」 No_53 项目员工II

🍅 1、专栏介绍 「SQL面试题库」是由 不是西红柿 发起,全员免费参与的SQL学习活动。我每天发布1道SQL面试真题,从简单到困难,涵盖所有SQL知识点,我敢保证只要做完这100道题,不仅能轻松搞定面试&#xff0…...

Ruby适用于什么类型的开发

Ruby是一种开源的、解释型的、面向对象的编程语言,由松本行弘(Yukihiro Matsumoto)于1993年首次发布。Ruby语言的设计理念是追求简洁优美,使编程更加人性化,其语法简单、易读、易写,被誉为“程序员的最佳朋…...

Mysql数据库的备份恢复

最近正在做一个异地数据的定期同步汇总工作,涉及到的数据库主要是Mysql数据库,用于存储现场的一些IOT采集的实时数据,所以做了以下备份恢复测试,现场和总部网络可定期联通,但速度有限,因此计划采用备份恢复…...

C++ 使用动态内存创建一个类

使用动态内存的一个常见原因是允许多个对象共享相同的状态。 例如,假定我们希望定义一个名为Blob 的类,保存一组元素。与容器不同,我们希望Blob对象的不同拷贝之间共享相同的元素。即,当我们拷贝一个Blob时,原Blob对象…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源&#xff0c;提供了很全面的思路&#xff0c;减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接&#xff1a;https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架&#xff1a; 代码框架结构&#xff1a;readme有…...