当前位置: 首页 > news >正文

统计学习方法第四章——朴素贝叶斯法

x.1 前言

朴素贝叶斯法是基于贝叶斯定理特征条件独立假设的分类方法。是通过给定training dataset学习联合概率分布的方法,是一种生成方法

x.2 使用贝叶斯定理做分类

使用贝叶斯定理做分类,相比较于朴素贝叶斯即丢除特征条件独立假设这个条件。

假设存在k类 c 1 , c 2 , . . . , c k c_1, c_2, ... , c_k c1,c2,...,ck,给定一个新实例 x = x ( 1 ) , . . . , x ( n ) x=x^{(1)}, ... , x^{(n)} x=x(1),...,x(n),判断该实例来自哪一类。在判断来自哪一类即使用贝叶斯公式计算属于每一个类别的概率 P ( Y = c i ∣ X = x ) = P ( Y = c i ) P ( X = x ∣ Y = c i ) P ( X = x ) P(Y=c_i|X=x)=\frac {P(Y=c_i)P(X=x|Y=c_i)}{P(X=x)} P(Y=ciX=x)=P(X=x)P(Y=ci)P(X=xY=ci),分母可以用全概率公式展开。接着依次计算属于每个类别的概率。

(下为贝叶斯公式:)

请添加图片描述

计算完后,取出类别概率最大的类别 c j c_j cj,则属于 c j c_j cj类。

x.3 使用朴素贝叶斯做分类

如果没理解的话,直接跳到x.6看例子

补充一下全概率公式,已知 B 1 , . . . , B n B_1, ... , B_n B1,...,Bn是一个完备事件组且两两互斥:

请添加图片描述

在求取后验概率时,使用贝叶斯定理做变换后,得到式子 P ( Y = c i ∣ X = x ) = P ( Y = c i ) P ( X = x ∣ Y = c i ) P ( X = x ) P(Y=c_i|X=x)=\frac {P(Y=c_i)P(X=x|Y=c_i)}{P(X=x)} P(Y=ciX=x)=P(X=x)P(Y=ci)P(X=xY=ci),分母用全概率公式展开,得到下式:

请添加图片描述

根据条件独立性假设推导条件概率展开式如下:

请添加图片描述

例如一个样本,它的特征取值是 x j ( 1 ) , . . . , x i ( n ) x_j^{(1)}, ... , x_i^{(n)} xj(1),...,xi(n)则你需要将这些值带入,就变成了上面第一行右边的式子,再根据独立性质展开即得(4.3)。

将(4.3)带入贝叶斯展开式(4.4),得到如下式子:

请添加图片描述

于是朴素贝叶斯分类器就变成了如下式:

请添加图片描述

通过观察我们可以看到对于不同大类 c k c_k ck,分母都是相同的,只要考察分子便可,于是将(4.6)化简得到如下:

请添加图片描述

我们注意到最终的后验概率=先验概率*j个条件概率乘积。

x.4 后验概率最大化的含义

后验概率最大化的概率=期望风险最小化准则。这便是朴素贝叶斯采用的原理。详见统计学习分析4.1.2。

x.5 朴素贝叶斯法的参数估计

参数估计采用了Maximum Likelihood Estimation(MLE,极大似然估计)。极大似然估计即求让似然函数最大值的参数,在一堆样本中数数即等于极大似然估计法,为什么可以看下面的推导:

在这里插入图片描述

使用极大似然估计法求后验概率展开式分子中的先验概率和条件概率如下:

先验概率,直接数数便可得:

请添加图片描述

条件概率,使用条件概率展开式展开成乘积的格式,再数数可得:

请添加图片描述

其中有j个特征,第j个特征有 S j S_j Sj个取值,y有k个大类。

x.6 朴素贝叶斯例子

请添加图片描述

请添加图片描述

x.7 贝叶斯估计

即在参数估计时,用贝叶斯估计代替MLE。因为在例如用女儿国做样本,估计人群中男生比例时,往往会出现所要估计的概率值为0的情况,这时候会影响到后验概率的计算结果,使分类产生偏差,所以引入贝叶斯估计,如下:

请添加图片描述

请添加图片描述

如此便不会出现概率全0的情况。

相关文章:

统计学习方法第四章——朴素贝叶斯法

x.1 前言 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。是通过给定training dataset学习联合概率分布的方法,是一种生成方法。 x.2 使用贝叶斯定理做分类 使用贝叶斯定理做分类,相比较于朴素贝叶斯即丢除特征条件独立假设这个条件。 …...

安装配置goaccess实现可视化并实时监控nginx的访问日志

一、业务需求 我们安装了nginx后,需要对nginx的访问情况进行监控(希望能够实时查看到访问nginx的情况),如下图所示: 二、goaccess的安装配置步骤 2.1、准备内容 需要先安装配置nginx或OpenResty - 安装 Linux环境对Nginx开源版源码下载、编译、安装、开机自启https://b…...

springboot第14集:MyBatis-CRUD讲解

注意点:增、删、改操作需要提交事务! 为了规范操作,在SQL的配置文件中,我们尽量将Parameter参数和resultType都写上! 编写Mapper接口类 import com.da.pojo.User; import java.util.List; public interface UserMapper…...

ES6新特性(1)

目录 一、字符串扩展 (1)字符串遍历器接口(for...of...) (2)模板字符串 二、字符串新增方法 (1)包含方法 (2)重复方法 (3)补全方…...

这就是二分查找?(C语言版)

大家好!我又来了,哈哈~今天我要和大家分享一种神奇的算法——二分查找!你可能会问,“二分查找有什么好玩的?”但在我看来它就像一场魔法表演,当你输入一个数,他会在一堆数中快速找到它的位置。找…...

操作系统之内存管理

连续分配 一、单一连续 直接为要运行的进程分配一个内存,只适合单任务,只能用于单对象、单任务,内存被分配为系统区和用户区,系统区在低地址,用户区是一个用户独享 二、等分分区 由于分配一个内存只能执行单任务&a…...

【Python | matplotlib】matplotlib.cm的理解以及举例说明

文章目录 一、模块介绍二、颜色举例 一、模块介绍 matplotlib.cm是Matplotlib中的一个模块,它提供了一组用于处理颜色映射(colormap)的函数和类。颜色映射是一种将数值映射到颜色的方法,常用于制作热力图、等值线图、散点图等。 …...

数据库单实例升级

一、单实例环境,全时长二个半钟多。详细图文说明到这下载 1、停止所有oracle相关进程。 Emctlstop dbconsole Isqlplusctl stop Lsnrctl stop sqlplus /nolog sql>conn /as sysdba Connectedtoanidleinstance. sql>shutdown 然后,冷备份下数据库cp…...

Photoshop如何使用选区之实例演示?

文章目录 0.引言1.利用快速选择工具抠图2.制作网店产品优惠券3.利用选区改变眼睛颜色4.抠取复杂的花束5.制作丁达尔光照效果6.利用选区调整图像局部颜色 0.引言 因科研等多场景需要进行绘图处理,笔者对PS进行了学习,本文通过《Photoshop2021入门教程》及…...

ThreadLocal的使用介绍和底层原理解析和开源框架的使用实例

文章目录 ThreadLocal的使用介绍和底层原理解析和开源框架的使用实例ThreadLocal简介ThreadLocal使用示例ThreadLocal原理解析Spring中ThreadLocal的应用小结ThreadLocal的使用步骤常见面试题案例解析(框架源码经典案例)案例实战 ThreadLocal的使用介绍和底层原理解析和开源框架…...

带你学c带你飞-P7取值范围

比特位 CPU能读懂的最小单元——比特位,bit,b 字节 内存机构的最小寻址单元——字节,Byte,B 1Byte8bit 进制 怎么算 注意:int默认是signed类型,signed类型第一位是符号位 符号位 存放signed类型的存…...

ramfs, rootfsinitramfs

什么是ramfs? ramfs是一个非常简单的文件系统,它将Linux的磁盘缓存机制(页面缓存和dentry缓存)导出为一个动态可调整大小的基于ram的文件系统。 Linux通常将所有文件缓存在内存中。从后备存储(通常是挂载文件系统的块设备)读取的数据页被保留下来,以防…...

十三届蓝桥杯研究生组国赛-最大公约数(线段树+二分)

十三届蓝桥杯研究生组国赛-最大公约数 1、问题描述2、解题思路2.1 解法一:暴力查询区间gcd(75%)2.2 解法二:线段树+二分法(AC)1、问题描述 问题描述 给定一个数组, 每次操作可以选择数组中任意两个相邻的元素 x , y x,y x,y...

数据结构——二叉树层序遍历

数据结构——二叉树层序遍历 107. 二叉树的层序遍历 II199. 二叉树的右视图思路: 637. 二叉树的层平均值 107. 二叉树的层序遍历 II 107. 二叉树的层序遍历 II 给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节…...

【微机原理】8088/8086微处理器

目录 一、8088/8086的功能结构 1.总线接口部件(BIU) 2.执行部件(EU) 二、8088/8086的寄存器结构(14个) 溢出标志的概念 溢出和进位的区别 8086CPU是Intel系列的16位微处理器,他有16根数据…...

springboot第12集:DAO功能代码

在Spring Boot中,DAO是数据访问对象的缩写,它是一种设计模式用于提供对数据库操作的抽象层。通过使用DAO模式,我们可以将数据操作与业务逻辑分离,并提供一个单独的接口来执行所有的数据库操作。 在Spring Boot中,通常使…...

基于KZG多项式承诺方案的RLN

1. 引言 RLN——Rate-Limiting Nullifier为PSE团队主导的项目,源自: Barry White Hat 2019年博客 Semaphore RLN, rate limiting nullifier for spam prevention in anonymous p2p setting RLN(Rate-Limiting Nullifier)是一种…...

《站在巨人的肩膀上学习Java》

Java从诞生距今已经有28年了,在这段时间里,随着Java版本的不断迭代,Java新特性的不断出现,使得Java被使用的越来越广泛。在工程界Java语言一直是大家最喜欢的语言之一,Java一直排行在编程语言热门程度的前3名。 可想而…...

敏捷ACP.敏捷估计与规划.Mike Cohn.

第一部分 传统规划失败的原因 vs 敏捷规划有效的原因 传统的项目规划方式往往会让我们失望。要回答-一个 新产品的范围/进度/资源的组合问题,传统规划过程不一定会产生令人非常满意的答案和最终产品。以下- -些论据可以支持这个结论: ●大约2/3的项目会显著超…...

[创新工具和方法论]-01- DOE课程基础知识

文章目录 1.DOE实验设计的介绍1.1 什么是实验设计DOE?1.2 DOE的优势有哪些?1.3 如何开展DoE研究?步骤 2.DOE实验培训3.数据分析步骤4.实验的随机化5.偏差6.R方 相关系数假设检验 7.三因子二水平全因子设计 1.DOE实验设计的介绍 实验设计是一种安排实验和分析实验数…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

蓝桥杯 冶炼金属

原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

书籍“之“字形打印矩阵(8)0609

题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...

【java】【服务器】线程上下文丢失 是指什么

目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失? 直观示例说明 为什么上下文如此重要? 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程,代码应该如何实现 推荐方案:使用 ManagedE…...

华为云Flexus+DeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手

华为云FlexusDeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手 一、构建知识库问答助手引言二、构建知识库问答助手环境2.1 基于FlexusX实例的Dify平台2.2 基于MaaS的模型API商用服务 三、构建知识库问答助手实战3.1 配置Dify环境3.2 创建知识库问答助手3.3 使用知…...