有理函数的不定积分习题
前置知识:有理函数的不定积分
习题
计算 ∫ x 3 + 1 x 4 − 3 x 3 + 3 x 2 − x d x \int \dfrac{x^3+1}{x^4-3x^3+3x^2-x}dx ∫x4−3x3+3x2−xx3+1dx
解:
\qquad 将被积函数的分母因式分解得
x 4 − 3 x 3 + 3 x 2 − x = x ( x − 1 ) 3 x^4-3x^3+3x^2-x=x(x-1)^3 x4−3x3+3x2−x=x(x−1)3
设被积函数有分解式
x 3 + 1 x 4 − 3 x 3 + 3 x 2 − x = A x + B x − 1 + C ( x − 1 ) 2 + D ( x − 1 ) 3 \dfrac{x^3+1}{x^4-3x^3+3x^2-x}=\dfrac Ax+\dfrac{B}{x-1}+\dfrac{C}{(x-1)^2}+\dfrac{D}{(x-1)^3} x4−3x3+3x2−xx3+1=xA+x−1B+(x−1)2C+(x−1)3D
将上式右端通分合并,分母相等,分子也应相等,得
x 3 + 1 = ( A + B ) x 3 + ( − 3 A − 2 B + C ) x 2 + ( 3 A + B − C + D ) x − A x^3+1=(A+B)x^3+(-3A-2B+C)x^2+(3A+B-C+D)x-A x3+1=(A+B)x3+(−3A−2B+C)x2+(3A+B−C+D)x−A
可列方程组
{ A + B = 1 − 3 A − 2 B + C = 0 3 A + B − C + D = 0 − A = 1 \begin{cases} A+B=1 \\ -3A-2B+C=0 \\ 3A+B-C+D=0 \\ -A=1 \end{cases} ⎩ ⎨ ⎧A+B=1−3A−2B+C=03A+B−C+D=0−A=1
解得
{ A = − 1 B = 2 C = 1 D = 2 \begin{cases} A=-1 \\ B=2 \\ C=1 \\ D=2 \end{cases} ⎩ ⎨ ⎧A=−1B=2C=1D=2
所以
\qquad 原式 = − ∫ 1 x d x + 2 ∫ 1 x − 1 d x + ∫ 1 ( x − 1 ) 2 d x + 2 ∫ 1 ( x − 1 ) 3 d x =-\int \dfrac 1xdx+2\int \dfrac{1}{x-1}dx+\int \dfrac{1}{(x-1)^2}dx+2\int \dfrac{1}{(x-1)^3}dx =−∫x1dx+2∫x−11dx+∫(x−1)21dx+2∫(x−1)31dx
= − ln ∣ x ∣ + 2 ln ∣ x − 1 ∣ − 1 x − 1 − 1 ( x − 1 ) 2 + C \qquad\qquad =-\ln|x|+2\ln|x-1|-\dfrac{1}{x-1}-\dfrac{1}{(x-1)^2}+C =−ln∣x∣+2ln∣x−1∣−x−11−(x−1)21+C
相关文章:
有理函数的不定积分习题
前置知识:有理函数的不定积分 习题 计算 ∫ x 3 1 x 4 − 3 x 3 3 x 2 − x d x \int \dfrac{x^31}{x^4-3x^33x^2-x}dx ∫x4−3x33x2−xx31dx 解: \qquad 将被积函数的分母因式分解得 x 4 − 3 x 3 3 x 2 − x x ( x − 1 ) 3 x^4-3x^33x^2-xx…...
PS滤镜插件-Nik Collection介绍
PS滤镜插件-Nik Collection介绍 什么是Nik CollectionNik Collection都包含什么? 什么是Nik Collection Nik Collection是一款PS滤镜插件套装,其包含了八款PS插件,功能涵盖修图、调色、降噪、胶片滤镜等方面。Nik Collection 作为很多摄影师…...
力扣刷题2023-05-04-1——题目:2614. 对角线上的质数
题目: 给你一个下标从 0 开始的二维整数数组 nums 。 返回位于 nums 至少一条 对角线 上的最大 质数 。如果任一对角线上均不存在质数,返回 0 。 注意: 如果某个整数大于 1 ,且不存在除 1 和自身之外的正整数因子,…...
【Java笔试强训 2】
🎉🎉🎉点进来你就是我的人了博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔🤺🤺🤺 目录 一、选择题 二、编程题 🔥排序子…...
术数基础背诵口诀整理
物象对应 五行方位天干神兽季节气候星宿生成数脏器木东甲乙青龙春风岁八肝火南丙丁朱雀夏热荧惑七心土中戊己?长夏湿镇五脾金西庚辛白虎秋燥太白九肺水北壬癸玄武冬寒辰六肾 口诀:东方甲乙青龙木,南方丙丁朱雀火,戊己勾陈腾蛇土&…...
Linux 基础语法 -2
如果我们以后再Linux当中 写了一些命名,导致程序我们不能进行操作了,如这个死循环: 他就会一直输出 "hello Linux" ,我们就使用 ctrl c 来终止因为程序或者指令异常,而导致我们无法进行指令输入ÿ…...
深度学习框架发展趋势
深度学习方法的发展是推动深度学习框架进步的最大动力,因此深度学习框架的功能和设计应顺应 算法和模型的发展趋势: 第一,易用性。深度学习领域仍处于快速发展期,参与者和学习者不断增加,新模型大量提出。因 此&#…...
Mysql为json字段创建索引的两种方式
目录 一、前言二、通过虚拟列添加索引(Secondary Indexes and Generated Columns)三、多值索引(Using multi-valued Indexes)四、官网地址 一、前言 JSON 数据类型是在mysql5.7版本后新增的,同 TEXT,BLOB …...
cassandra数据库入门-4
插入数据 在表中创建数据 您可以使用命令 INSERT 将数据插入表中一行的列中。 下面给出了在表中创建数据的语法。 INSERT INTO <tablename> (<column1 name>, <column2 name>....) VALUES (<value1>, <value2>....) USING <option> 例子…...
微服务学习——分布式搜索
初识elasticsearch 什么是elasticsearch elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。 elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域…...
ChatGPT根据销售数据、客户反馈、财务报告,自动生成报告,并根据不同利益方的需要和偏好进行调整?
该场景对应的关键词库(24个): 汇报对象身份(下属、跨部门平级、领导)、销售数据(销售额、销售量、销售渠道)、财务报告(营业收入、净利润、成本费用)、市场分析…...
Flask开发之环境搭建
目录 1、安装flask 2、创建Flask工程 编辑 3、初始化效果 4、运行效果 5、设置Debug模式 6、设置Host 7、设置Port 8、在app.config中添加配置 1、安装flask 如果电脑上从没有安装过flask,则在命令行界面输入以下命令: pip install flask 如果电…...
Java集合框架与ArrayList、LinkedList的区别
文章目录 Java集合框架与ArrayList、LinkedList的区别集合框架ArrayList特点操作 LinkedList特点操作 区别代码实践注意事项 Java集合框架与ArrayList、LinkedList的区别 在Java中,集合框架是非常重要的一部分。集合框架提供了各种数据结构和算法,可以方…...
python-pandas库
目录 目录 目录 1.pandas库简介(https://www.gairuo.com/p/pandas-overview) 2.pandas库read_csv方法(https://zhuanlan.zhihu.com/p/340441922?utm_mediumsocial&utm_oi27819925045248) 1.pandas库简介(http…...
C++学习day--01 C生万物
1、C/C学习中遇到的问题: 1. 大部分初学者,学习 C/C 都是从入门到放弃。 C/C太难吗? 2. 90% 以上的初学者,学完 C/C 以后,考试完了,书看完了, 但还是不会做项目 是学的不够好吗࿱…...
链表及链表的常见操作和用js封装一个链表
最近在学数据结构和算法,正好将学习的东西记录下来,我是跟着一个b站博主学习的,是使用js来进行讲解的,待会也会在文章后面附上视频链接地址,大家想学习的可以去看看 本文主要讲解单向链表,双向链表后续也会…...
源码安装工具checkinstall使用
每当从源码包编译程序时,安装过程很愉快,但当你想删除时,就很费脑筋了,你可能要去找你当时编译的目录执行make unistall,当然更可能的是,你早就把源码包给删除了,对于强迫症来说,这显…...
离散数学集合论
集合论 主要内容 集合基本概念 属于、包含幂集、空集文氏图等 集合的基本运算 并、交、补、差等 集合恒等式 集合运算的算律,恒等式的证明方法 集合的基本概念 集合的定义 集合没有明确的数学定义 理解:由离散个体构成的整体称为集合,…...
TypeScript 基础
类型注解 类型注解:约束变量的类型 示例代码: let age:number 18 说明:代码中的 :number 就是类型注解 解释:约定了类型,就只能给变量赋值该类型的值,否则,就会报错 错误演示:…...
MySQL InnoDB引擎 和 Oracle SGA
MySQL InnoDB引擎和Oracle SGA有以下异同: 异同点: 两者都是用来管理数据存储和访问的。 它们都可以通过调整参数来优化性能。 它们都支持事务处理和ACID属性。 它们都可以通过备份和恢复来保护数据。 异点: MySQL InnoDB引擎是一种存储…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
