当前位置: 首页 > news >正文

归一化处理(2023寒假每日一题 14)

在机器学习中,对数据进行归一化处理是一种常用的技术。

将数据从各种各样分布调整为平均值为 0 0 0、方差为 1 1 1 的标准分布,在很多情况下都可以有效地加速模型的训练。

这里假定需要处理的数据为 n n n 个整数 a 1 , a 2 , ⋯ , a n a_1,a_2,⋯,a_n a1,a2,,an

这组数据的平均值:

在这里插入图片描述

方差:

在这里插入图片描述

使用如下函数处理所有数据,得到的 n n n 个浮点数 f ( a 1 ) , f ( a 2 ) , ⋯ , f ( a n ) f(a_1),f(a_2),⋯,f(a_n) f(a1),f(a2),,f(an) 即满足平均值为 0 0 0 且方差为 1 1 1

在这里插入图片描述

输入格式
第一行包含一个整数 n n n,表示待处理的整数个数。

第二行包含空格分隔的 n n n 个整数,依次表示 a 1 , a 2 , ⋯ , a n a_1,a_2,⋯,a_n a1,a2,,an

输出格式
输出共 n n n 行,每行一个浮点数,依次表示按上述方法归一化处理后的数据 f ( a 1 ) , f ( a 2 ) , ⋯ , f ( a n ) f(a_1),f(a_2),⋯,f(a_n) f(a1),f(a2),,f(an)

如果你输出的每个浮点数与参考结果相比,均满足绝对误差不大于 1 0 − 4 10^{−4} 104,则该测试点满分,否则不得分。

数据范围
全部的测试数据保证 n , ∣ a i ∣ ≤ 1000 n,|a_i|≤1000 n,ai1000,其中 ∣ a i ∣ |a_i| ai 表示 a i a_i ai 的绝对值。且输入的 n n n 个整数 a 1 , a 2 , ⋯ , a n a_1,a_2,⋯,a_n a1,a2,,an 满足:方差 D ( a ) ≥ 1 D(a)≥1 D(a)1

输入样例:

7
-4 293 0 -22 12 654 1000
输出样例:
-0.7485510379073613
0.04504284674812264
-0.7378629047806881
-0.7966476369773906
-0.7057985054006686
1.0096468614303775
1.9341703768876082

样例解释

平均值: a ˉ ≈ 276.14285714285717 \bar a ≈ 276.14285714285717 aˉ276.14285714285717

方差: D ( a ) ≈ 140060.69387755104 D(a)≈140060.69387755104 D(a)140060.69387755104

标准差: D ( a ) ≈ 374.24683549437134 \sqrt{D(a)}≈374.24683549437134 D(a) 374.24683549437134


#include<iostream>
#include<cmath>using namespace std;const int N = 1010;int n;
int a[N];int main(){scanf("%d", &n);int sum = 0;for(int i = 0; i < n; i++) scanf("%d", &a[i]), sum += a[i];double avg = sum * 1.0 / n;double sdiff = 0;for(int i = 0; i < n; i++) sdiff += (a[i] - avg) * (a[i] - avg);sdiff = sqrt(sdiff / n);for(int i = 0; i < n; i++) printf("%.16f\n", (a[i] - avg) / sdiff);return 0;
}

相关文章:

归一化处理(2023寒假每日一题 14)

在机器学习中&#xff0c;对数据进行归一化处理是一种常用的技术。 将数据从各种各样分布调整为平均值为 0 0 0、方差为 1 1 1 的标准分布&#xff0c;在很多情况下都可以有效地加速模型的训练。 这里假定需要处理的数据为 n n n 个整数 a 1 , a 2 , ⋯ , a n a_1,a_2,⋯…...

无公网IP,外网远程连接MySQL数据库

哈喽~大家好&#xff0c;这篇来看看无公网IP&#xff0c;外网远程连接MySQL数据库。 文章目录 前言1. 检查mysql安装状态2. 安装配置cpolar内网穿透3. 创建tcp隧道&#xff0c;映射3306端口4. 公网远程连接4.1 图形化界面4.2 使用命令行远程连接 5. 配置固定tcp端口地址5.1 保留…...

OJ刷题 第十四篇(递归较多)

23204 - 进制转换 时间限制 : 1 秒 内存限制 : 128 MB 将一个10进制数x(1 < x < 100,000,000)转换成m进制数(2< m < 16) 。分别用 ABCDEF表示10以上的数字。 输入 x m (1 < x < 100,000,000, 2< m < 16) 输出 m进制数 样例 输入 31 16 输出 1F 答…...

FileZilla读取目录列表失败(vsftpd被动模式passive mode部署不正确)

文章目录 现象问题原因解决方法临时解决&#xff08;将默认连接方式改成主动模式&#xff09;从根本解决&#xff08;正确部署vsftpd的被动模式&#xff09; 现象 用FileZilla快速连接vsftpd服务器时&#xff0c;提示读取目录列表失败 问题原因 是我vsftpd服务端的被动模式没…...

【Java面试八股文】数据库篇

导航&#xff1a; 【黑马Java笔记踩坑汇总】JavaSEJavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线MySQL高级篇设计模式牛客面试题 目录 请你说说MySQL索引,以及它们的好处和坏处 请你说说MySQL的索引是什么结构,为什么不用哈希表 请你说说数据库索引的底…...

Android Glide加载图片、网络监听、设置资源监听

再搞事情之前首先创建一个项目&#xff0c;就命名为GlideDemo吧。    一、项目配置 创建好之后&#xff0c;在app模块下build.gradle的dependencies闭包中添加如下依赖&#xff1a; //glide//glideimplementation com.github.bumptech.glide:glide:4.11.0annotationProcess…...

等保定级报告模版

等保定级怎么做_luozhonghua2000的博客-CSDN博客 上篇给大家说清楚了,等保定级怎么做,但在日常工作中,需要向上级或甲方输出定级报告,这篇我降弄个模版供大家参考。 信息系统安全等级保护定级报告 XX 平台系统描述 (一) 2023年5月,XX 正式上线,XX 隶属于深圳 XX 科技…...

计算机组成原理4.2.2汉明码

编码的最小距离 奇校验和偶校验 看1的个数是奇数 还是偶数 汉明码 汉明码的配置 根据不等式&#xff0c;确定增添几位&#xff0c;根据指数放置增添位 汉明码的检错 分不同检测小组 分组规则&#xff1a;哪位为’1‘就是哪组元素。 1号位为‘1’的都是第一组元素&#…...

JavaScript全解析——本地存储的概念、用法详解

本地存储概念&#xff1a; 就是浏览器给我们提供的可以让我们在浏览器上保存一些数据 常用的本地存储 localStorage sessionStorage localStorage 特点: 1.长期存储,除非手动删除否则会一直保存在浏览器中&#xff0c;清除缓存或者卸载浏览器也就没有了 2.可以跨页面通讯,…...

对象浅拷贝的5种方式

参考原文:浅拷贝的五种实现方式 - 掘金 (juejin.cn) 哈喽 大家好啊 最近发现自己对对象都不是很熟练&#xff0c;特别是涉及到一些复制&#xff0c;深浅拷贝的东西 1.Object.assign 首先 我们创建一个空对象obj1 然后创建一个对象obj2 用object.assign(目标对象&#xff0c…...

Java每日一练(20230504)

目录 1. 位1的个数 &#x1f31f; 2. 移除元素 &#x1f31f; 3. 验证二叉搜索树 &#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷题专栏 &#x1f31f; Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏 1. 位1的个数 编写一个…...

【深度学习】计算机视觉(13)——模型评价及结果记录

1 Tensorboard怎么解读&#xff1f; 因为意识到tensorboard的使用远不止画个图放个图片那么简单&#xff0c;所以这里总结一些关键知识的笔记。由于时间问题&#xff0c;我先学习目前使用最多的功能&#xff0c;大部分源码都包含summary的具体使用&#xff0c;基本不需要自己修…...

项目经理在项目中是什么角色?

有人说&#xff0c;项目经理就是一个求人的差事&#xff0c;你是在求人帮你做事。 有人说&#xff0c;项目经理就是一个与人扯皮的差事&#xff0c;你要不断的与开发、产品、测试等之间沟通、协调。 确实&#xff0c;在做项目的时候&#xff0c;有的人是为了完成功能&#x…...

【技术分享】防止根据IP查域名,防止源站IP泄露

有的人设置了禁止 IP 访问网站&#xff0c;但是别人用 https://ip 的形式&#xff0c;会跳到你服务器所绑定的一个域名网站上 直接通过 https://IP, 访问网站&#xff0c;会出现“您的连接不是私密连接”&#xff0c;然后点高级&#xff0c;会出现“继续前往 IP”&#xff0c;…...

Baumer工业相机堡盟相机如何使用偏振功能(偏振相机优点和行业应用)(C#)

项目场景&#xff1a; Baumer工业相机堡盟相机是一种高性能、高质量的工业相机&#xff0c;可用于各种应用场景&#xff0c;如物体检测、计数和识别、运动分析和图像处理。 Baumer的万兆网相机拥有出色的图像处理性能&#xff0c;可以实时传输高分辨率图像。此外&#xff0…...

无损以太网与网络拥塞管理(PFC、ECN)

无损以太网 无损以太网&#xff08;Lossless Ethernet&#xff09;是一种专门用于数据中心网络的网络技术&#xff0c;旨在提供低延迟、高吞吐量和可靠性的传输服务。它是在传统以太网的基础上进行了扩展&#xff0c;引入了新的拥塞管理机制&#xff0c;以避免数据包丢失和网络…...

爬虫大全:从零开始学习爬虫的基础知识

爬虫是一种自动获取网站信息的技术&#xff0c;它可以帮助我们快速地抓取海量网站数据&#xff0c;进行统计分析、挖掘和展示。本文旨在为初学者详细介绍爬虫的基础知识&#xff0c;包括&#xff1a;爬虫原理、爬虫分类、网页结构分析、爬虫工具和技能、爬虫实践示范&#xff0…...

【Python】【进阶篇】21、Django Admin数据表可视化

目录 21、Django Admin数据表可视化1. 创建超级用户2. 将Model注册到管理后台1)在admin.py文件中声明 3. django_admin_log数据表 21、Django Admin数据表可视化 在《Django Admin后台管理系统》介绍过 Django 的后台管理系统是为了方便站点管理人员对数据表进行操作。Django …...

【MySQL约束】数据管理实用指南

1、数据库约束的认识 数据库约束的概念&#xff1a;数据库的约束是关系型数据库的一个重要的功能&#xff0c;它提供了一种“校验数据”合法性的机制&#xff0c;能够保证数据的“完整性”、“准确性”和“正确性” 数据库的约束&#xff1a; not null&#xff1a;不能存储 nul…...

2023年第二十届五一数学建模竞赛C题:“双碳”目标下低碳建筑研究-思路详解与代码答案

该题对于模型的考察难度较低&#xff0c;难度在于数据的搜集以及选取与处理。 这里推荐数据查询的网站&#xff1a;中国碳核算数据库&#xff08;CEADs&#xff09; https://www.ceads.net.cn/ 国家数据 国家数据​data.stats.gov.cn/easyquery.htm?cnC01 以及各省市《统…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

轻量级Docker管理工具Docker Switchboard

简介 什么是 Docker Switchboard &#xff1f; Docker Switchboard 是一个轻量级的 Web 应用程序&#xff0c;用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器&#xff0c;使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...