当前位置: 首页 > news >正文

【VAR | 时间序列】以美国 GDP 和通货膨胀数据为例的VAR模型简单实战(含Python源代码)

以美国 GDP 和通货膨胀数据为例:

1. 数据集

下载数据我们需要从 FRED 数据库下载美国 GDP 和通货膨胀数据,并将它们存储在 CSV 文件中。可以在 FRED 网站(https://fred.stlouisfed.org/)搜索并下载需要的数据。在这里,并且将它们命名为 ‘gdp.csv’ 和 ‘inflation.csv’。

在这里插入图片描述
网站为:

https://fred.stlouisfed.org/

在这里插入图片描述

  • 在搜索栏中输入 ‘GDP’ 并按下回车键,在结果列表中选择 ‘Gross Domestic Product’。
  • 在搜索栏中输入 ‘CPIAUCSL’ 并按下回车键,在结果列表中选择 ‘Consumer Price Index for All
    Urban Consumers: All Items in U.S. City Average’.

注意数据保存为csv格式:

在这里插入图片描述

2. 合并数据集

需要使用 pandas 读取这些 CSV 文件并合并它们。以下是示例代码:

import pandas as pd
# 读取 GDP 和通货膨胀数据
gdp = pd.read_csv('./data/gdp.csv', index_col = 'DATE', parse_dates = True)
inflation = pd.read_csv('./data/inflation.csv', index_col = 'DATE', parse_dates = True)# 合并数据
data = pd.concat([gdp, inflation], axis=1, join='inner')
data.columns = ['GDP', 'Inflation']

在这里,我们使用 pd.read_csv() 方法读取 GDP 和通货膨胀数据。

我们将它们存储在 gdp 和 inflation 变量中,并使用 pd.concat() 方法将它们合并为一个数据框。

我们还使用 join=‘inner’ 参数来确保只包括同一时间段中的数据,并使用 data.columns 属性为列指定新的名称。

3. 模型使用

接下来,需要使用 VAR() 方法创建 VAR 模型对象。以下是示例代码:

from statsmodels.tsa.api import VAR
model = VAR(data)

在这里,我们使用 Statsmodels 库的 VAR() 方法来创建 VAR 模型对象。我们将合并的数据传递给 VAR() 方法。

然后,我们需要使用 fit() 方法拟合 VAR 模型。以下是示例代码:

results = model.fit(maxlags=2, ic='aic')
results.summary()

在这里,我们使用 fit() 方法拟合 VAR 模型,并指定最大滞后阶数为 2。我们还使用 ic=‘aic’ 参数选择 AIC 准则进行模型选择。最后,我们使用 summary() 方法输出模型参数。

4. 预测

最后,我们可以使用 forecast() 方法进行预测,并使用 plot() 方法将预测结果可视化。以下是示例代码:

import matplotlib.pyplot as plt
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)lag_order = results.k_ar
forecast_input = data.values[-lag_order:]
forecast = results.forecast(forecast_input, steps=12*3)
# 将预测结果可视化
forecast_index = pd.date_range(data.index[-1], periods=12*3, freq='M')
forecast_df = pd.DataFrame(forecast, index=forecast_index, columns=['GDP', 'Inflation'])
data.plot(figsize=(12, 6), legend=True)
forecast_df.plot(figsize=(12, 6), legend=True)
plt.xlabel('Time')
plt.ylabel('percent')
plt.show()

在这里插入图片描述
在这里插入图片描述
在这里,我们使用 forecast() 方法预测未来三年(36个月)的 GDP 和通货膨胀。然后,我们使用 plot() 方法将实际数据和预测结果可视化。

相关文章:

【VAR | 时间序列】以美国 GDP 和通货膨胀数据为例的VAR模型简单实战(含Python源代码)

以美国 GDP 和通货膨胀数据为例: 1. 数据集 下载数据我们需要从 FRED 数据库下载美国 GDP 和通货膨胀数据,并将它们存储在 CSV 文件中。可以在 FRED 网站(https://fred.stlouisfed.org/)搜索并下载需要的数据。在这里&#xff0…...

常用的设计模式之二(行为型模式)

文章目录 观察者模式模板模式 观察者模式 观察者模式是一种行为型设计模式,它定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象,当主题对象发生变化时,它的所有观察者都会收到通知并进行相应的处理。 观察者…...

MYSQL基本操作(增删改查)

数据库的列类型 int:整型 用于定义整数类型的数据 float:单精度浮点4字节32位 准确表示到小数点后六位 double:双精度浮点8字节64位 char:固定长度的字符类 用于定义字符类型数据&…...

双周赛103(模拟、网格图BFS、树状数组)

文章目录 双周赛103[6406. K 个元素的最大和](https://leetcode.cn/problems/maximum-sum-with-exactly-k-elements/)模拟 [6405. 找到两个数组的前缀公共数组](https://leetcode.cn/problems/find-the-prefix-common-array-of-two-arrays/)模拟 [6403. 网格图中鱼的最大数目](…...

【数据结构】二叉树(详细)

二叉树 1.树1.1定义1.2基本术语1.3树形结构和线性结构1.4树的存储结构1.4.1双亲表示法1.4.2孩子兄弟表示法 2.二叉树2.1定义2.2特殊二叉树2.3性质2.4存储结构2.4.1顺序存储2.4.2链式存储结构 3.二叉树的基本操作3.1前序遍历(先序遍历)3.2中序遍历3.3后序…...

蓝牙耳机哪款性价比高一些?2023年性价比最高的蓝牙耳机推荐

随着科技的进步,蓝牙耳机已然成为我们生活中的一部分,无论是通勤、追剧、运动或者玩游戏,大都会用到蓝牙耳机。那么,哪款蓝牙耳机的性价比高一些?相信大多数人在选择产品的时候,都会看性价比。接下来&#…...

等保2.0存在的问题

等保制度和技术要求 国家信息安全等级保护制度(二级)相关要求包含技术要求和管理要求,技术要求包含:物理安全、网络安全、主机安全、应用安全及数据安全及备份恢复;管理要求包含:安全管理机构、安全管理制度、人员安全管理、系统建设管理、系统运维管理。 一、 技术要求 …...

国民技术N32G430开发笔记(9)- IAP升级 Bootloader的制作

IAP升级 Bootloader的制作 1、上节提到Flash的分区,0x8000000-0x8004000为Boot分区,我们的bootloader就烧录到此分区。 Bootloader很简单,新建一个普通的工程, 也不用初始化外部设备,开机后,直接跳转到 A…...

如何使用depcheck检查vue和react的依赖,以后不用把时间浪费在依赖问题上了

当我们在开发 JavaScript 项目时,会引入各种依赖库。但是有些依赖库可能只用到了部分功能,或者已经不再需要了,但是却一直被保留在项目中。 这些未使用的依赖库会占据项目的空间,增加项目的复杂度,影响项目的性能。为…...

使用Python和机器学习进行文本情感分类

使用Python和机器学习进行文本情感分类 1. 效果图2. 原理3. 源码参考这篇博客将介绍如何使用Python进行机器学习的文本情感分类(Text Emotions Classification)。 1. 效果图 训练文本及情感分类前5条数据如下: 训练过程及测试文本情感分类效果图如下: 可以看到 对文本“S…...

QML路径视图(The PathView)

路径视图(PathView)非常强大,但也非常复杂,这个视图由QtQuick提供。它创建了一个可以让子项沿着任意路径移动的视图。沿着相同的路径,使用缩放(scale),透明(opacity&…...

5月4号软件资讯更新合集.....

🚀 Layui 2.8.2 发布 更新日志 table 修复 autoSort: true 时,更改 table.cache 未同步到 data 属性的问题 修复 多级表头存在 hide 表头属性时,执行完整重载可能出现的错位问题 修复 未开启 page 属性时底边框缺失问题 优化 打印内容中…...

基于 Rainbond 的混合云管理解决方案

内容概要:文章探讨了混合云场景中的难点、要点,以及Rainbond平台在跨云平台的混合云管理方面的解决方案。包括通过通过统一控制台对多集群中的容器进行编排和管理,实现了对混合云中应用的一致性管理。文章还介绍了Rainbond平台在混合云环境下…...

加强网络风险生命周期

当今业务环境中云原生应用程序的激增帮助组织简化了运营。 企业现在可以近乎实时地监控数据、与客户互动并分享见解,帮助他们克服曾经阻碍生产力的低效率问题。 然而,使用云也极大地扩展了企业可利用的攻击面。 CSPM、CWPP、CNAPP、SAST、SCA、IaC、D…...

Java——二叉树的深度

题目链接 牛客网在线oj题——二叉树的深度 题目描述 输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度,根节点的深度视为 1 。 数据范围&am…...

一般现在时(二)

一般现在时(二) 1.什么叫实义动词? 实义动词是指表示有具体意思的动词,也叫行为动词。 例如:like(喜欢) eat(吃) live(居住) have(有) run(跑)等等。 实义动词占英语中动词的绝大多数 🔖我们已学过的be动词可译为是,有时译为成为,有时则没有具体意…...

leetcode657. 机器人能否返回原点

题目描述解题思路执行结果 leetcode657. 机器人能否返回原点 题目描述 机器人能否返回原点 在二维平面上,有一个机器人从原点 (0, 0) 开始。给出它的移动顺序,判断这个机器人在完成移动后是否在 (0, 0) 处结束。 移动顺序由字符串 moves 表示。字符 mov…...

DAY 48 Nginx的 location与rewrite模块

[正则表达式] 常用的[Nginx] 正则表达式 $ :匹配输入字符串的结束位置* :匹配前面的字符零次或多次。如“ol*”能匹配“o”及“ol”、“oll” :匹配前面的字符一次或多次。如“ol”能匹配“ol”及“oll”、“olll”,但不能匹配“…...

Linux 常用操作技巧

Linux 操作技巧大全 Linux是一种强大的操作系统,掌握各种操作技巧可以帮助我们惬意地使用它。在这篇博客中,我们将分享一些实用的Linux技巧,希望能对您有所帮助! 1. 使用Tab进行自动补全 在输入命令时,按下Tab键可…...

BetaFlight统一硬件配置文件研读之timer命令

BetaFlight统一硬件配置文件研读之timer命令 1. 源由2. 代码分析3. 实例分析4. 配置情况4.1 AFn配置查表4.2 timer4.3 timer show4.4 timer pin list 5. 参考资料 统一硬件配置文件的设计是一种非常好的设计模式,可以将硬件和软件的工作进行解耦。 1. 源由 cli命令…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...