Java——二叉树的深度
题目链接
牛客网在线oj题——二叉树的深度
题目描述
输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度,根节点的深度视为 1 。
数据范围:节点的数量满足 0≤n≤100 ,节点上的值满足0≤val≤100
进阶:空间复杂度 O(1) ,时间复杂度 O(n)
假如输入的用例为{1,2,3,4,5,#,6,#,#,7},那么如下图:
题目示例
示例1
输入:
{1,2,3,4,5,#,6,#,#,7}
返回值:
4
示例2
输入:
{}
返回值:
0
解题思路一
使用广度优先搜索,将二叉树进行层序遍历,每遍历一层就将depth++
广度优先遍历需要借助队列,首先将根节点加入到queue中,然后每次先确定队列的大小size,然后弹出size个元素,分别将这些元素的左子树和右子树加入到队列中(如果不为null)
上面每次弹出size个元素的过程就是遍历一层的过程,因此此时将depth++即可
例如:
首先将根节点加入队列中,depth++
现在queue的长度是1,弹出1个元素,将其左子树和右子树添加进队列,depth++
现在queue的长度是2,弹出2个元素,将其左子树和右子树添加进队列,depth++
现在queue的长度是3,弹出3个元素,将其左子树和右子树添加进队列,depth++
现在queue的长度是1,弹出1个元素,此时该元素左子树和右子树都为null,不再向队列中添加元素,循环结束,depth = 4
方法一完整代码
import java.util.*;
/**
public class TreeNode {int val = 0;TreeNode left = null;TreeNode right = null;public TreeNode(int val) {this.val = val;}}
*/
public class Solution {public int TreeDepth(TreeNode root) {if(root == null){return 0;}Queue<TreeNode> queue = new LinkedList<>();queue.add(root);int depth = 0;while(!queue.isEmpty()) {int size = queue.size();depth++;for (int i = 0; i < size; i++) {TreeNode cur = queue.poll();if (cur.left != null) {queue.add(cur.left);}if(cur.right != null){queue.add(cur.right);}}}return depth;}
}
思路二
深度优先搜索,分别确定左右子树中深度的较大值
使用递归分别确定节点的左子树高度和右子树高度,每次递归到下一层节点都需要将depth + 1,如果此时depth的长度大于max,就将max的值更新为depth,这样就可以返回左右子树高度的较大者
方法二完整代码
/**
public class TreeNode {int val = 0;TreeNode left = null;TreeNode right = null;public TreeNode(int val) {this.val = val;}
}
*/
public class Solution {public int TreeDepth(TreeNode root) {if(root == null){return 0;}int depth = 0;int[] max = new int[1];max[0] = 0;TreeDepthHelper(root, depth, max);return max[0];}private void TreeDepthHelper(TreeNode root, int depth, int[] max) {if(root == null){if(max[0] < depth){max[0] = depth;}return;}TreeDepthHelper(root.left, depth + 1, max);TreeDepthHelper(root.right, depth + 1, max); }
}
思路三
和思路二类似,形式上更容易理解
我们认为最下面的空指针null为第0层,往上走每层加一
因此,我们只需要统计左子树的高度和右子树高度中的较大值,然后再加1即可得到当前节点的高度
方法三完整代码
public int TreeDepth(TreeNode root) {if (root == null){return 0;}return Math.max(TreeDepth(root.left), TreeDepth(root.right)) + 1;
}
相关文章:

Java——二叉树的深度
题目链接 牛客网在线oj题——二叉树的深度 题目描述 输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度,根节点的深度视为 1 。 数据范围&am…...
一般现在时(二)
一般现在时(二) 1.什么叫实义动词? 实义动词是指表示有具体意思的动词,也叫行为动词。 例如:like(喜欢) eat(吃) live(居住) have(有) run(跑)等等。 实义动词占英语中动词的绝大多数 🔖我们已学过的be动词可译为是,有时译为成为,有时则没有具体意…...
leetcode657. 机器人能否返回原点
题目描述解题思路执行结果 leetcode657. 机器人能否返回原点 题目描述 机器人能否返回原点 在二维平面上,有一个机器人从原点 (0, 0) 开始。给出它的移动顺序,判断这个机器人在完成移动后是否在 (0, 0) 处结束。 移动顺序由字符串 moves 表示。字符 mov…...
DAY 48 Nginx的 location与rewrite模块
[正则表达式] 常用的[Nginx] 正则表达式 $ :匹配输入字符串的结束位置* :匹配前面的字符零次或多次。如“ol*”能匹配“o”及“ol”、“oll” :匹配前面的字符一次或多次。如“ol”能匹配“ol”及“oll”、“olll”,但不能匹配“…...

Linux 常用操作技巧
Linux 操作技巧大全 Linux是一种强大的操作系统,掌握各种操作技巧可以帮助我们惬意地使用它。在这篇博客中,我们将分享一些实用的Linux技巧,希望能对您有所帮助! 1. 使用Tab进行自动补全 在输入命令时,按下Tab键可…...

BetaFlight统一硬件配置文件研读之timer命令
BetaFlight统一硬件配置文件研读之timer命令 1. 源由2. 代码分析3. 实例分析4. 配置情况4.1 AFn配置查表4.2 timer4.3 timer show4.4 timer pin list 5. 参考资料 统一硬件配置文件的设计是一种非常好的设计模式,可以将硬件和软件的工作进行解耦。 1. 源由 cli命令…...

码出高效:Java开发手册笔记(java对象四种引用关系及ThreadLocal)
码出高效:Java开发手册笔记(java对象四种引用关系及ThreadLocal) 前言一、引用类型二、ThreadLocal价值三、ThreadLocal副作用 前言 “水能载舟,亦能覆舟。”用这句话来形容 ThreadLocal 最贴切不过。ThreadLocal 初衷是在线程并…...

为什么要进行数据决策?数据决策对企业而言有何重要意义?
“大数据”几乎已成为时下最时髦的词汇,不夸张地说,当今各行各业无不对大数据充满了向往,希望自己在新一轮的大数据营销中抢占先机。同时,从大数据中引申出的数据挖掘、数据分析、数据安全等数据运用技术也成为人们热捧的焦点。 …...

2. Java 异常体系
2.1 Throwable java.lang.Throwable 类是 Java 程序执行过程中发生的异常事件对应的类的根父类。 Throwable 中的常用方法: public void printStackTrace():打印异常的详细信息。 包含了异常的类型、异常的原因、异常出现的位置、在开发和调试阶段都得…...
如何学好STM32,需要哪些步骤?
学习STM32应用于项目开发需要以下步骤: 学习STM32的基本知识:包括STM32的架构、寄存器、外设等,理解STM32的工作原理和基本操作方法。 学习嵌入式系统和RTOS的基础知识:了解嵌入式系统的概念、RTOS的基本原理和使用方法ÿ…...
武忠祥老师每日一题||不定积分基础训练(四)
∫ d x 1 x 3 \int \frac{\rm dx}{1x^3} ∫1x3dx 解法一: 待定系数法: ∫ d x 1 x 3 \int \frac{dx}{1x^3} ∫1x3dx ∫ d x ( 1 x ) ( x 2 − x 1 ) \int \frac{dx}{(1x)(x^2-x1)} ∫(1x)(x2−x1)dx 1 3 ∫ ( 1 x 1 − x 2 x 2 − x …...

记一次产线打印json导致的redis连接超时
服务在中午十一点上线后,服务每分钟发出三到四次redis连接超时告警。错误信息为: Dial err:dial tcp: lookup xxxxx: i/o timeout 排查过程 先是检查redis机器的情况,redis写入并发数较大,缓存中保留了一小时大概400w条数据。red…...

FPGA入门系列12--RAM的使用
文章简介 本系列文章主要针对FPGA初学者编写,包括FPGA的模块书写、基础语法、状态机、RAM、UART、SPI、VGA、以及功能验证等。将每一个知识点作为一个章节进行讲解,旨在更快速的提升初学者在FPGA开发方面的能力,每一个章节中都有针对性的代码…...

【三十天精通Vue 3】第二十六天 Vue3 与 TypeScript 最佳实践
✅创作者:陈书予 🎉个人主页:陈书予的个人主页 🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区 🌟专栏地址: 三十天精通 Vue 3 文章目录 引言一、为什么使用TypeScript?二、Vue 3和TypeScript…...
ffmpeg-mov-metadate不识别Bug修复
文章目录 BUG起因类似问题反馈问题解决具体步骤: 阅读过文章ffmpeg命令行解析调试流程记录movenc.c源码分析 BUG起因 在ffmpeg参数默认可识别的metadata参数如下: 具体可见libavformat/movenc.c->mov_write_udta_tag() mov_write_string_metadata(s,…...
(8)(8.6) 引导程序更新
文章目录 前言 1 我在哪里可以下载最新的引导程序? 2 使用任务规划器进行升级...

汽车电路图、原理框图、线束图、元器件布置图的识读技巧与要点
摘要: 想要读懂汽车电路图就必须把电的通路理清楚,即某条线是什么信号,该信号是输入信号、输出信号还是控制信号以及信号起什么作用,在什么条件下有信号,从哪里来,到哪里去。 一、汽车电路图的识读技巧 1.…...

( 数组和矩阵) 667. 优美的排列 II ——【Leetcode每日一题】
❓667. 优美的排列 II 难度:中等 给你两个整数 n 和 k ,请你构造一个答案列表 answer ,该列表应当包含从 1 到 n 的 n 个不同正整数,并同时满足下述条件: 假设该列表是 answer [a1, a2, a3, ... , an] ࿰…...
【python基础语法七】python内置函数和内置模块
内置全局函数 abs 绝对值函数 print(abs(-1)) # 1 print(abs(100)) # 100round 四舍五入 """奇进偶不进(n.5的情况特定发生)""" res round(3.87) # 4 res round(4.51) # 5 # res round(2.5) # 2 # res round(3.5) # 4 res round(6.5) # …...

81. read readline readlines 读取文件的三种方法
81. read readline readlines 读取文件的三种方法 文章目录 81. read readline readlines 读取文件的三种方法1. 读取文件的三种方法2. read方法3. readline方法4. readlines方法5. 代码总结5.1 read方法读取全部内容5.2 readline方法读取一行,返回字符串5.3 readli…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...