武忠祥老师每日一题||不定积分基础训练(四)
∫ d x 1 + x 3 \int \frac{\rm dx}{1+x^3} ∫1+x3dx
解法一:
待定系数法:
∫ d x 1 + x 3 \int \frac{dx}{1+x^3} ∫1+x3dx
= ∫ d x ( 1 + x ) ( x 2 − x + 1 ) =\int \frac{dx}{(1+x)(x^2-x+1)} =∫(1+x)(x2−x+1)dx
= 1 3 ∫ ( 1 x + 1 + − x + 2 x 2 − x + 1 ) d x =\frac{1}{3} \int(\frac{1}{x+1} +\frac{-x+2}{x^2-x+1})\,{\rm d}x =31∫(x+11+x2−x+1−x+2)dx
= 1 3 [ ln ∣ x + 1 ∣ − 1 2 ∫ ( 2 x − 1 ) − 3 x 2 − x + 1 d x ] =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{2}\int\frac{(2x-1)-3}{x^2-x+1}\,{\rm d}x] =31[ln∣x+1∣−21∫x2−x+1(2x−1)−3dx]
= 1 3 [ ln ∣ x + 1 ∣ − 1 6 ∫ d ( x 2 − x + 1 ) x 2 − x + 1 + 1 2 ∫ 1 ( x − 1 2 ) 2 + 3 4 d x =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{6}\int\frac{d(x^2-x+1)}{x^2-x+1}+\frac{1}{2}\int\frac{1}{(x-\frac{1}{2})^2+\frac{3}{4}}\,{\rm d}x =31[ln∣x+1∣−61∫x2−x+1d(x2−x+1)+21∫(x−21)2+431dx
= 1 3 [ ln ∣ x + 1 ∣ − 1 6 ln ∣ x 2 − x + 1 ∣ + 1 2 × 1 3 2 arctan x − 1 2 3 2 + C =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{6}\ln\lvert x^2-x+1\rvert+\frac{1}{2}\times\frac{1}{\frac{\sqrt{3}}{2}}\arctan {\frac{x-\frac{1}{2}}{\frac{\sqrt{3}}{2}}}+C =31[ln∣x+1∣−61ln∣x2−x+1∣+21×231arctan23x−21+C
= 1 3 [ ln ∣ x + 1 ∣ − 1 6 ln ∣ x 2 − x + 1 ∣ + 1 3 arctan 2 x − 1 3 + C =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{6}\ln\lvert x^2-x+1\rvert+\frac{1}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}+C =31[ln∣x+1∣−61ln∣x2−x+1∣+31arctan32x−1+C
草稿:
原式 = ∫ ( A x + 1 + B x + C x 2 − x + 1 ) d x 原式=\int( \frac{A}{x+1}+\frac{Bx+C}{x^2-x+1})\,{\rm d}x 原式=∫(x+1A+x2−x+1Bx+C)dx
则 A ( x 2 − x + 1 ) + ( B x + C ) ( x + 1 ) = 1 则A(x^2-x+1)+(Bx+C) (x+1)=1 则A(x2−x+1)+(Bx+C)(x+1)=1
即 A + B = 0 ; − A + B + C = 0 ; A + C = 1 即A+B=0;-A+B+C=0;A+C=1 即A+B=0;−A+B+C=0;A+C=1
解得 C = 2 3 , A = 1 3 , B = − 1 3 解得C=\frac{2}{3},A=\frac{1}{3},B= -\frac{1}{3} 解得C=32,A=31,B=−31
解法二:
灵活应用加项减项
可以看武忠祥老师每日一题||不定积分基础训练(三)
∫ 1 1 + x 3 d x \int \frac{1}{1+x^3}\,{\rm d}x ∫1+x31dx
= 1 2 ∫ ( 1 + x ) + ( 1 − x ) 1 + x 3 d x =\frac{1}{2}\int \frac{(1+x)+(1-x)}{1+x^3}\,{\rm d}x =21∫1+x3(1+x)+(1−x)dx
= 1 2 ∫ ( 1 + x ) + ( 1 − x ) ( 1 − x + x 2 ) ( 1 + x ) =\frac{1}{2}\int\frac{(1+x)+(1-x)}{(1-x+x^2)(1+x)} =21∫(1−x+x2)(1+x)(1+x)+(1−x)
= 1 2 [ 2 3 arctan 2 x − 1 3 + ln ∣ x + 1 ∣ − 1 3 ln ∣ x 3 + 1 ∣ ] + C =\frac{1}{2}[\frac{2}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}+\ln\lvert x+1\rvert-\frac{1}{3}\ln \lvert x^3+1 \rvert]+C =21[32arctan32x−1+ln∣x+1∣−31ln∣x3+1∣]+C
类题拓展:
∫ x 1 + x 3 d x \int \frac{x}{1+x^3}\,{\rm d}x ∫1+x3xdx
= 1 2 ∫ ( 1 + x ) − ( 1 − x ) 1 + x 3 d x =\frac{1}{2}\int \frac{(1+x)-(1-x)}{1+x^3}\,{\rm d}x =21∫1+x3(1+x)−(1−x)dx
= 1 2 [ 2 3 arctan 2 x − 1 3 − ( ln ∣ x + 1 ∣ − 1 3 ln ∣ x 3 + 1 ∣ ) ] + C =\frac{1}{2}[\frac{2}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}-(\ln\lvert x+1\rvert-\frac{1}{3}\ln \lvert x^3+1 \rvert)]+C =21[32arctan32x−1−(ln∣x+1∣−31ln∣x3+1∣)]+C
相关文章:
武忠祥老师每日一题||不定积分基础训练(四)
∫ d x 1 x 3 \int \frac{\rm dx}{1x^3} ∫1x3dx 解法一: 待定系数法: ∫ d x 1 x 3 \int \frac{dx}{1x^3} ∫1x3dx ∫ d x ( 1 x ) ( x 2 − x 1 ) \int \frac{dx}{(1x)(x^2-x1)} ∫(1x)(x2−x1)dx 1 3 ∫ ( 1 x 1 − x 2 x 2 − x …...
记一次产线打印json导致的redis连接超时
服务在中午十一点上线后,服务每分钟发出三到四次redis连接超时告警。错误信息为: Dial err:dial tcp: lookup xxxxx: i/o timeout 排查过程 先是检查redis机器的情况,redis写入并发数较大,缓存中保留了一小时大概400w条数据。red…...
FPGA入门系列12--RAM的使用
文章简介 本系列文章主要针对FPGA初学者编写,包括FPGA的模块书写、基础语法、状态机、RAM、UART、SPI、VGA、以及功能验证等。将每一个知识点作为一个章节进行讲解,旨在更快速的提升初学者在FPGA开发方面的能力,每一个章节中都有针对性的代码…...
【三十天精通Vue 3】第二十六天 Vue3 与 TypeScript 最佳实践
✅创作者:陈书予 🎉个人主页:陈书予的个人主页 🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区 🌟专栏地址: 三十天精通 Vue 3 文章目录 引言一、为什么使用TypeScript?二、Vue 3和TypeScript…...
ffmpeg-mov-metadate不识别Bug修复
文章目录 BUG起因类似问题反馈问题解决具体步骤: 阅读过文章ffmpeg命令行解析调试流程记录movenc.c源码分析 BUG起因 在ffmpeg参数默认可识别的metadata参数如下: 具体可见libavformat/movenc.c->mov_write_udta_tag() mov_write_string_metadata(s,…...
(8)(8.6) 引导程序更新
文章目录 前言 1 我在哪里可以下载最新的引导程序? 2 使用任务规划器进行升级...
汽车电路图、原理框图、线束图、元器件布置图的识读技巧与要点
摘要: 想要读懂汽车电路图就必须把电的通路理清楚,即某条线是什么信号,该信号是输入信号、输出信号还是控制信号以及信号起什么作用,在什么条件下有信号,从哪里来,到哪里去。 一、汽车电路图的识读技巧 1.…...
( 数组和矩阵) 667. 优美的排列 II ——【Leetcode每日一题】
❓667. 优美的排列 II 难度:中等 给你两个整数 n 和 k ,请你构造一个答案列表 answer ,该列表应当包含从 1 到 n 的 n 个不同正整数,并同时满足下述条件: 假设该列表是 answer [a1, a2, a3, ... , an] ࿰…...
【python基础语法七】python内置函数和内置模块
内置全局函数 abs 绝对值函数 print(abs(-1)) # 1 print(abs(100)) # 100round 四舍五入 """奇进偶不进(n.5的情况特定发生)""" res round(3.87) # 4 res round(4.51) # 5 # res round(2.5) # 2 # res round(3.5) # 4 res round(6.5) # …...
81. read readline readlines 读取文件的三种方法
81. read readline readlines 读取文件的三种方法 文章目录 81. read readline readlines 读取文件的三种方法1. 读取文件的三种方法2. read方法3. readline方法4. readlines方法5. 代码总结5.1 read方法读取全部内容5.2 readline方法读取一行,返回字符串5.3 readli…...
【社区图书馆】【图书活动第四期】
目录 一、前言 二、作者简介 三、《PyTorch高级机器学习实战》内容简介 四、书目录 一、前言 今天,偶尔逛到csdn社区图书馆,看到有活动 “【图书活动第四期】来一起写书评领实体奖牌红包电子勋章吧!”(活动到今天结束…...
webpack学习指南(上)
构建流程 Webpack 的构建流程可以分为以下几个步骤: 解析配置文件:Webpack 会读取项目中的 webpack.config.js 文件,并解析其中的配置项。 解析入口文件:Webpack 通过配置文件中设置的 entry 入口,递归地解析出所有依…...
刷题记录˃ʍ˂
一、1033. 移动石子直到连续 思路 这道题是一道数学题,它一共分为三种可能 第一种可能为三个石子本来就是连续的时候 第二种可能为最少步数为1的时候,相邻石子不能大于一格 第三种可能为最少步数为2的时候,这时相邻石子大于一格 那么第二…...
Word2vec原理+实战学习笔记(二)
来源:投稿 作者:阿克西 编辑:学姐 前篇:Word2vec原理实战学习笔记(一) 视频链接:https://ai.deepshare.net/detail/p_5ee62f90022ee_zFpnlHXA/6 5 对比模型(论文Model Architectur…...
什么是Java的多线程?
Java的多线程是指在同一时间内,一个程序中同时运行多个线程。每个线程都是一个独立的执行路径,可以独立地执行代码。Java中的多线程机制使得程序可以更高效地利用计算机的多核处理器和CPU时间,从而提高程序的性能和响应能力。 创建和使用Jav…...
“use strict“是什么? 使用它有什么优缺点?
严格模式 - JavaScript | MDN Javascript 严格模式详解 - 阮一峰的网络日志 1、"use strict" 是什么? "use strict" :指定代码在严格条件下执行; 2、 使用 "use strict" 有什么优缺点? ① 严格模式通过抛出错…...
【C++】C++11常用特性总结
哥们哥们,把书读烂,困在爱里是笨蛋! 文章目录 一、统一的列表初始化1.统一的{}初始化2.std::initializer_list类型的初始化 二、简化声明的关键字1.decltype2.auto && nullptr 三、STL中的一些变化1.新增容器:array &…...
泛型——List 优于数组
数组与泛型有很大的不同: 1. 数组是协变的(covariant) 意思是:如果Sub是Super的子类型,则数组类型Sub[] 是数组类型Super[] 的子类型。 2. 泛型是不变的(invariant) 对于任何两种不同的类型Ty…...
JavaScript中对象的定义、引用和复制
JavaScript是一种广泛使用的脚本语言,其设计理念是面向对象的范式。在JavaScript中,对象就是一系列属性的集合,每个属性包含一个名称和一个值。属性的值可以是基本数据类型、对象类型或函数类型,这些类型的值相互之间有着不同的特…...
JavaScript通过函数异常处理来输入圆的半径,输出圆的面积的代码
以下为实现通过函数异常处理来输入圆的半径,输出圆的面积的代码和运行截图 目录 前言 一、通过函数异常处理来输入圆的半径,输出圆的面积 1.1 运行流程及思想 1.2 代码段 1.3 JavaScript语句代码 1.4 运行截图 前言 1.若有选择,您可以…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
