武忠祥老师每日一题||不定积分基础训练(四)
∫ d x 1 + x 3 \int \frac{\rm dx}{1+x^3} ∫1+x3dx
解法一:
待定系数法:
∫ d x 1 + x 3 \int \frac{dx}{1+x^3} ∫1+x3dx
= ∫ d x ( 1 + x ) ( x 2 − x + 1 ) =\int \frac{dx}{(1+x)(x^2-x+1)} =∫(1+x)(x2−x+1)dx
= 1 3 ∫ ( 1 x + 1 + − x + 2 x 2 − x + 1 ) d x =\frac{1}{3} \int(\frac{1}{x+1} +\frac{-x+2}{x^2-x+1})\,{\rm d}x =31∫(x+11+x2−x+1−x+2)dx
= 1 3 [ ln ∣ x + 1 ∣ − 1 2 ∫ ( 2 x − 1 ) − 3 x 2 − x + 1 d x ] =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{2}\int\frac{(2x-1)-3}{x^2-x+1}\,{\rm d}x] =31[ln∣x+1∣−21∫x2−x+1(2x−1)−3dx]
= 1 3 [ ln ∣ x + 1 ∣ − 1 6 ∫ d ( x 2 − x + 1 ) x 2 − x + 1 + 1 2 ∫ 1 ( x − 1 2 ) 2 + 3 4 d x =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{6}\int\frac{d(x^2-x+1)}{x^2-x+1}+\frac{1}{2}\int\frac{1}{(x-\frac{1}{2})^2+\frac{3}{4}}\,{\rm d}x =31[ln∣x+1∣−61∫x2−x+1d(x2−x+1)+21∫(x−21)2+431dx
= 1 3 [ ln ∣ x + 1 ∣ − 1 6 ln ∣ x 2 − x + 1 ∣ + 1 2 × 1 3 2 arctan x − 1 2 3 2 + C =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{6}\ln\lvert x^2-x+1\rvert+\frac{1}{2}\times\frac{1}{\frac{\sqrt{3}}{2}}\arctan {\frac{x-\frac{1}{2}}{\frac{\sqrt{3}}{2}}}+C =31[ln∣x+1∣−61ln∣x2−x+1∣+21×231arctan23x−21+C
= 1 3 [ ln ∣ x + 1 ∣ − 1 6 ln ∣ x 2 − x + 1 ∣ + 1 3 arctan 2 x − 1 3 + C =\frac{1}{3}[\ln \lvert x+1\rvert-\frac{1}{6}\ln\lvert x^2-x+1\rvert+\frac{1}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}+C =31[ln∣x+1∣−61ln∣x2−x+1∣+31arctan32x−1+C
草稿:
原式 = ∫ ( A x + 1 + B x + C x 2 − x + 1 ) d x 原式=\int( \frac{A}{x+1}+\frac{Bx+C}{x^2-x+1})\,{\rm d}x 原式=∫(x+1A+x2−x+1Bx+C)dx
则 A ( x 2 − x + 1 ) + ( B x + C ) ( x + 1 ) = 1 则A(x^2-x+1)+(Bx+C) (x+1)=1 则A(x2−x+1)+(Bx+C)(x+1)=1
即 A + B = 0 ; − A + B + C = 0 ; A + C = 1 即A+B=0;-A+B+C=0;A+C=1 即A+B=0;−A+B+C=0;A+C=1
解得 C = 2 3 , A = 1 3 , B = − 1 3 解得C=\frac{2}{3},A=\frac{1}{3},B= -\frac{1}{3} 解得C=32,A=31,B=−31
解法二:
灵活应用加项减项
可以看武忠祥老师每日一题||不定积分基础训练(三)
∫ 1 1 + x 3 d x \int \frac{1}{1+x^3}\,{\rm d}x ∫1+x31dx
= 1 2 ∫ ( 1 + x ) + ( 1 − x ) 1 + x 3 d x =\frac{1}{2}\int \frac{(1+x)+(1-x)}{1+x^3}\,{\rm d}x =21∫1+x3(1+x)+(1−x)dx
= 1 2 ∫ ( 1 + x ) + ( 1 − x ) ( 1 − x + x 2 ) ( 1 + x ) =\frac{1}{2}\int\frac{(1+x)+(1-x)}{(1-x+x^2)(1+x)} =21∫(1−x+x2)(1+x)(1+x)+(1−x)
= 1 2 [ 2 3 arctan 2 x − 1 3 + ln ∣ x + 1 ∣ − 1 3 ln ∣ x 3 + 1 ∣ ] + C =\frac{1}{2}[\frac{2}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}+\ln\lvert x+1\rvert-\frac{1}{3}\ln \lvert x^3+1 \rvert]+C =21[32arctan32x−1+ln∣x+1∣−31ln∣x3+1∣]+C
类题拓展:
∫ x 1 + x 3 d x \int \frac{x}{1+x^3}\,{\rm d}x ∫1+x3xdx
= 1 2 ∫ ( 1 + x ) − ( 1 − x ) 1 + x 3 d x =\frac{1}{2}\int \frac{(1+x)-(1-x)}{1+x^3}\,{\rm d}x =21∫1+x3(1+x)−(1−x)dx
= 1 2 [ 2 3 arctan 2 x − 1 3 − ( ln ∣ x + 1 ∣ − 1 3 ln ∣ x 3 + 1 ∣ ) ] + C =\frac{1}{2}[\frac{2}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}-(\ln\lvert x+1\rvert-\frac{1}{3}\ln \lvert x^3+1 \rvert)]+C =21[32arctan32x−1−(ln∣x+1∣−31ln∣x3+1∣)]+C
相关文章:
武忠祥老师每日一题||不定积分基础训练(四)
∫ d x 1 x 3 \int \frac{\rm dx}{1x^3} ∫1x3dx 解法一: 待定系数法: ∫ d x 1 x 3 \int \frac{dx}{1x^3} ∫1x3dx ∫ d x ( 1 x ) ( x 2 − x 1 ) \int \frac{dx}{(1x)(x^2-x1)} ∫(1x)(x2−x1)dx 1 3 ∫ ( 1 x 1 − x 2 x 2 − x …...

记一次产线打印json导致的redis连接超时
服务在中午十一点上线后,服务每分钟发出三到四次redis连接超时告警。错误信息为: Dial err:dial tcp: lookup xxxxx: i/o timeout 排查过程 先是检查redis机器的情况,redis写入并发数较大,缓存中保留了一小时大概400w条数据。red…...

FPGA入门系列12--RAM的使用
文章简介 本系列文章主要针对FPGA初学者编写,包括FPGA的模块书写、基础语法、状态机、RAM、UART、SPI、VGA、以及功能验证等。将每一个知识点作为一个章节进行讲解,旨在更快速的提升初学者在FPGA开发方面的能力,每一个章节中都有针对性的代码…...

【三十天精通Vue 3】第二十六天 Vue3 与 TypeScript 最佳实践
✅创作者:陈书予 🎉个人主页:陈书予的个人主页 🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区 🌟专栏地址: 三十天精通 Vue 3 文章目录 引言一、为什么使用TypeScript?二、Vue 3和TypeScript…...
ffmpeg-mov-metadate不识别Bug修复
文章目录 BUG起因类似问题反馈问题解决具体步骤: 阅读过文章ffmpeg命令行解析调试流程记录movenc.c源码分析 BUG起因 在ffmpeg参数默认可识别的metadata参数如下: 具体可见libavformat/movenc.c->mov_write_udta_tag() mov_write_string_metadata(s,…...
(8)(8.6) 引导程序更新
文章目录 前言 1 我在哪里可以下载最新的引导程序? 2 使用任务规划器进行升级...

汽车电路图、原理框图、线束图、元器件布置图的识读技巧与要点
摘要: 想要读懂汽车电路图就必须把电的通路理清楚,即某条线是什么信号,该信号是输入信号、输出信号还是控制信号以及信号起什么作用,在什么条件下有信号,从哪里来,到哪里去。 一、汽车电路图的识读技巧 1.…...

( 数组和矩阵) 667. 优美的排列 II ——【Leetcode每日一题】
❓667. 优美的排列 II 难度:中等 给你两个整数 n 和 k ,请你构造一个答案列表 answer ,该列表应当包含从 1 到 n 的 n 个不同正整数,并同时满足下述条件: 假设该列表是 answer [a1, a2, a3, ... , an] ࿰…...
【python基础语法七】python内置函数和内置模块
内置全局函数 abs 绝对值函数 print(abs(-1)) # 1 print(abs(100)) # 100round 四舍五入 """奇进偶不进(n.5的情况特定发生)""" res round(3.87) # 4 res round(4.51) # 5 # res round(2.5) # 2 # res round(3.5) # 4 res round(6.5) # …...

81. read readline readlines 读取文件的三种方法
81. read readline readlines 读取文件的三种方法 文章目录 81. read readline readlines 读取文件的三种方法1. 读取文件的三种方法2. read方法3. readline方法4. readlines方法5. 代码总结5.1 read方法读取全部内容5.2 readline方法读取一行,返回字符串5.3 readli…...

【社区图书馆】【图书活动第四期】
目录 一、前言 二、作者简介 三、《PyTorch高级机器学习实战》内容简介 四、书目录 一、前言 今天,偶尔逛到csdn社区图书馆,看到有活动 “【图书活动第四期】来一起写书评领实体奖牌红包电子勋章吧!”(活动到今天结束…...
webpack学习指南(上)
构建流程 Webpack 的构建流程可以分为以下几个步骤: 解析配置文件:Webpack 会读取项目中的 webpack.config.js 文件,并解析其中的配置项。 解析入口文件:Webpack 通过配置文件中设置的 entry 入口,递归地解析出所有依…...

刷题记录˃ʍ˂
一、1033. 移动石子直到连续 思路 这道题是一道数学题,它一共分为三种可能 第一种可能为三个石子本来就是连续的时候 第二种可能为最少步数为1的时候,相邻石子不能大于一格 第三种可能为最少步数为2的时候,这时相邻石子大于一格 那么第二…...

Word2vec原理+实战学习笔记(二)
来源:投稿 作者:阿克西 编辑:学姐 前篇:Word2vec原理实战学习笔记(一) 视频链接:https://ai.deepshare.net/detail/p_5ee62f90022ee_zFpnlHXA/6 5 对比模型(论文Model Architectur…...
什么是Java的多线程?
Java的多线程是指在同一时间内,一个程序中同时运行多个线程。每个线程都是一个独立的执行路径,可以独立地执行代码。Java中的多线程机制使得程序可以更高效地利用计算机的多核处理器和CPU时间,从而提高程序的性能和响应能力。 创建和使用Jav…...
“use strict“是什么? 使用它有什么优缺点?
严格模式 - JavaScript | MDN Javascript 严格模式详解 - 阮一峰的网络日志 1、"use strict" 是什么? "use strict" :指定代码在严格条件下执行; 2、 使用 "use strict" 有什么优缺点? ① 严格模式通过抛出错…...

【C++】C++11常用特性总结
哥们哥们,把书读烂,困在爱里是笨蛋! 文章目录 一、统一的列表初始化1.统一的{}初始化2.std::initializer_list类型的初始化 二、简化声明的关键字1.decltype2.auto && nullptr 三、STL中的一些变化1.新增容器:array &…...

泛型——List 优于数组
数组与泛型有很大的不同: 1. 数组是协变的(covariant) 意思是:如果Sub是Super的子类型,则数组类型Sub[] 是数组类型Super[] 的子类型。 2. 泛型是不变的(invariant) 对于任何两种不同的类型Ty…...
JavaScript中对象的定义、引用和复制
JavaScript是一种广泛使用的脚本语言,其设计理念是面向对象的范式。在JavaScript中,对象就是一系列属性的集合,每个属性包含一个名称和一个值。属性的值可以是基本数据类型、对象类型或函数类型,这些类型的值相互之间有着不同的特…...

JavaScript通过函数异常处理来输入圆的半径,输出圆的面积的代码
以下为实现通过函数异常处理来输入圆的半径,输出圆的面积的代码和运行截图 目录 前言 一、通过函数异常处理来输入圆的半径,输出圆的面积 1.1 运行流程及思想 1.2 代码段 1.3 JavaScript语句代码 1.4 运行截图 前言 1.若有选择,您可以…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...