【TCP为什么需要粘包和拆包】
如今,大半个互联网都建立在 TCP 协议之上,我们使用的 HTTP 协议、消息队列、存储、缓存,都需要用到 TCP 协议——这是因为 TCP 协议提供了可靠性。简单来说,可靠性就是让数据无损送达。但若是考虑到成本,就会变得非常复杂——因为还需要尽可能地提升吞吐量、降低延迟、减少丢包率。
TCP 协议具有很强的实用性,而可靠性又是 TCP 最核心的能力,所以理所当然成为面试官们津津乐道的问题。具体来说,从一个终端有序地发出多个数据包,经过一个复杂的网络环境,到达目的地的时候会变得无序,而可靠性要求数据恢复到原始的顺序。这里我先给你提出两个问题:
-
TCP 协议是如何恢复数据的顺序的?
-
拆包和粘包的作用是什么?
TCP 的拆包和粘包
TCP 是一个传输层协议。TCP 发送数据的时候,往往不会将数据一次性发送,像下图这样

而是将数据拆分成很多个部分,然后再逐个发送。像下图这样:

同样的,在目的地,TCP 协议又需要逐个接收数据。请你思考,TCP 为什么不一次发送完所有的数据?比如我们要传一个大小为 10M 的文件,对于应用层而言,就是一次传送完成的。而传输层的协议为什么不选择将这个文件一次发送完呢?
这里有很多原因,比如为了稳定性,一次发送的数据越多,出错的概率越大。再比如说为了效率,网络中有时候存在着并行的路径,拆分数据包就能更好地利用这些并行的路径。再有,比如发送和接收数据的时候,都存在着缓冲区。如下图所示:

缓冲区是在内存中开辟的一块区域,目的是缓冲。因为大量的应用频繁地通过网卡收发数据,这个时候,网卡只能一个一个处理应用的请求。当网卡忙不过来的时候,数据就需要排队,也就是将数据放入缓冲区。如果每个应用都随意发送很大的数据,可能导致其他应用实时性遭到破坏。
还有一些原因比如内存的最小分配单位是页表,如果数据的大小超过一个页表,可能会存在页面置换问题,造成性能的损失。
总之,方方面面的原因:在传输层封包不能太大。这种限制,往往是以缓冲区大小为单位的。也就是 TCP 协议,会将数据拆分成不超过缓冲区大小的一个个部分。每个部分有一个独特的名词,叫作 TCP 段(TCP Segment)。
在接收数据的时候,一个个 TCP 段又被重组成原来的数据。
像这样,数据经过拆分,然后传输,然后在目的地重组,俗称拆包。所以拆包是将数据拆分成多个 TCP 段传输。那么粘包是什么呢?有时候,如果发往一个目的地的多个数据太小了,为了防止多次发送占用资源,TCP 协议有可能将它们合并成一个 TCP 段发送,在目的地再还原成多个数据,这个过程俗称粘包。所以粘包是将多个数据合并成一个 TCP 段发送。
TCP Segment
那么一个 TCP 段长什么样子呢?下图是一个 TCP 段的格式:

我们可以看到,TCP 的很多配置选项和数据粘在了一起,作为一个 TCP 段。
显然,让你把每一部分都记住似乎不太现实,但是我会带你把其中最主要的部分理解。TCP 协议就是依靠每一个 TCP 段工作的,所以你每认识一个 TCP 的能力,几乎都会找到在 TCP Segment 中与之对应的字段。接下来我先带你认识下它们。
-
Source Port/Destination Port 描述的是发送端口号和目标端口号,代表发送数据的应用程序和接收数据的应用程序。比如 80 往往代表 HTTP 服务,22 往往是 SSH 服务……
-
Sequence Number 和 Achnowledgment Number 是保证可靠性的两个关键。具体见下文的讨论。
-
Data Offset 是一个偏移量。这个量存在的原因是 TCP Header 部分的长度是可变的,因此需要一个数值来描述数据从哪个字节开始。
-
Reserved 是很多协议设计会保留的一个区域,用于日后扩展能力。
-
URG/ACK/PSH/RST/SYN/FIN 是几个标志位,用于描述 TCP 段的行为。也就是一个 TCP 封包到底是做什么用的?
1)URG 代表这是一个紧急数据,比如远程操作的时候,用户按下了 Ctrl+C,要求终止程序,这种请求需要紧急处理。
2)ACK 代表响应
3)PSH 代表数据推送,也就是在传输数据的意思。
4)SYN 同步请求,也就是申请握手。
5)FIN 终止请求,也就是挥手。
特别说明一下:以上这 5 个标志位,每个占了一个比特,可以混合使用。比如 ACK 和 SYN 同时为 1,代表同步请求和响应被合并了。这也是 TCP 协议,为什么是三次握手的原因之一。
6) Window 也是 TCP 保证稳定性并进行流量控制的工具”中详细介绍。
7)Checksum 是校验和,用于校验 TCP 段有没有损坏。
8)Urgent Pointer 指向最后一个紧急数据的序号(Sequence Number)。它存在的原因是:有时候紧急数据是连续的很多个段,所以需要提前告诉接收方进行准备。
9)Options 中存储了一些可选字段,比如接下来我们要讨论的 MSS(Maximun Segment Size)。
10)Padding 存在的意义是因为 Options 的长度不固定,需要 Pading 进行对齐。
Sequence Number 和 Acknowledgement Number
在 TCP 协议的设计当中,数据被拆分成很多个部分,部分增加了协议头。合并成为一个 TCP 段,进行传输。这个过程,我们俗称拆包。这些 TCP 段经过复杂的网络结构,由底层的 IP 协议,负责传输到目的地,然后再进行重组。
这里请你思考一个问题:稳定性要求数据无损地传输,也就是说拆包获得数据,又需要恢复到原来的样子。而在复杂的网络环境当中,即便所有的段是顺序发出的,也不能保证它们顺序到达,因此,发出的每一个 TCP 段都需要有序号。这个序号,就是 Sequence Number(Seq)。

如上图所示。发送数据的时候,为每一个 TCP 段分配一个自增的 Sequence Number。接收数据的时候,虽然得到的是乱序的 TCP 段,但是可以通过 Seq 进行排序。
但是这样又会产生一个新的问题——接收方如果要回复发送方,也需要这个 Seq。而网络的两个终端,去同步一个自增的序号是非常困难的。因为任何两个网络主体间,时间都不能做到完全同步,又没有公共的存储空间,无法共享数据,更别说实现一个分布式的自增序号了。
其实这个问题的本质就好像两个人在说话一样,我们要确保他们说出去的话,和回答之间的顺序。因为 TCP 是一个双工的协议,两边可能会同时说话。所以聪明的科学家想到了确定一句话的顺序,需要两个值去描述——也就是发送的字节数和接收的字节数。

我们重新定义一下 Seq(如上图所示),对于任何一个接收方,如果知道了发送者发送某个 TCP 段时,已经发送了多少字节的数据,那么就可以确定发送者发送数据的顺序。
但是这里有一个问题。如果接收方也向发送者发送了数据请求(或者说双方在对话),接收方就不知道发送者发送的数据到底对应哪一条自己发送的数据了。
举个例子:下面 A 和 B 的对话中,我们可以确定他们彼此之间接收数据的顺序。但是无法确定数据之间的关联关系,所以只有 Sequence Number 是不够的。
A:今天天气好吗?
A:今天你开心吗?
B:开心
B:天气不好
人类很容易理解这几句话的顺序,但是对于机器来说就需要特别的标注。因此我们还需要另一个数据,就是每个 TCP 段发送时,发送方已经接收了多少数据。用 Acknowledgement Number 表示,下面简写为 ACK。
下图中,终端发送了三条数据,并且接收到四条数据,通过观察,根据接收到的数据中的 Seq 和 ACK,将发送和接收的数据进行排序。

例如上图中,发送方发送了 100 字节的数据,而接收到的(Seq = 0 和 Seq =100)的两个封包,都是针对发送方(Seq = 0)这个封包的。发送 100 个字节,所以接收到的 ACK 刚好是 100。说明(Seq= 0 和 Seq= 100)这两个封包是针对接收到第 100 个字节数据后,发送回来的。这样就确定了整体的顺序。
注意,无论 Seq 还是 ACK,都是针对“对方”而言的。是对方发送的数据和对方接收到的数据。我们在实际的工作当中,可以通过 Whireshark 调试工具观察两个 TCP 连接的 Seq和 ACK。

MSS(Maximun Segment Size)
MSS,它也是面试经常会问到的一个 TCP Header 中的可选项(Options),这个可选项控制了 TCP 段的大小,它是一个协商字段(Negotiate)。协议是双方都要遵循的标准,因此配置往往不能由单方决定,需要双方协商。
TCP 段的大小(MSS)涉及发送、接收缓冲区的大小设置,双方实际发送接收封包的大小,对拆包和粘包的过程有指导作用,因此需要双方去协商。
如果这个字段设置得非常大,就会带来一些影响。
首先对方可能会拒绝,作为服务的提供方,你可能不会愿意接收太大的 TCP 段。因为大的 TCP 段,会降低性能,比如内存使用的性能。
还有就是资源的占用。一个用户占用服务器太多的资源,意味着其他的用户就需要等待或者降低他们的服务质量。
其次,支持 TCP 协议工作的 IP 协议,工作效率会下降。TCP 协议不肯拆包,IP 协议就需要拆出大量的包。那么 IP 协议为什么需要拆包呢?这是因为在网络中,每次能够传输的数据不可能太大,这受限于具体的网络传输设备,也就是物理特性。但是 IP 协议,拆分太多的封包并没有意义。因为可能会导致属于同个 TCP 段的封包被不同的网络路线传输,这会加大延迟。同时,拆包,还需要消耗硬件和计算资源。
那是不是 MSS 越小越好呢?MSS 太小的情况下,会浪费传输资源(降低吞吐量)。因为数据被拆分之后,每一份数据都要增加一个头部。如果 MSS 太小,那头部的数据占比会上升,这让吞吐量成为一个灾难。所以在使用的过程当中,MSS 的配置,往往都是一个折中的方案。而根据 Unix 的哲学,不要去猜想什么样的方案是最合理的,而是要尝试去用实验证明它,一切都要用实验依据说话。
总结
TCP 协议的设计像一台巨大而严密的机器,每次我重新温习 TCP 协议,都会感叹“它庞大,而且很琐碎”。每一个细节的设计,都有很深的思考。比如 Sequence Number 和 Acknowledge Number 的设计,就非常巧妙地利用发送字节数和接收字节数解决了顺序的问题。
尝试来回答面试题目:TCP 协议是如何恢复数据的顺序的,TCP 拆包和粘包的作用是什么?
【解析】TCP 拆包的作用是将任务拆分处理,降低整体任务出错的概率,以及减小底层网络处理的压力。拆包过程需要保证数据经过网络的传输,又能恢复到原始的顺序。这中间,需要数学提供保证顺序的理论依据。TCP 利用(发送字节数、接收字节数)的唯一性来确定封包之间的顺序关系。
相关文章:
【TCP为什么需要粘包和拆包】
如今,大半个互联网都建立在 TCP 协议之上,我们使用的 HTTP 协议、消息队列、存储、缓存,都需要用到 TCP 协议——这是因为 TCP 协议提供了可靠性。简单来说,可靠性就是让数据无损送达。但若是考虑到成本,就会变得非常复…...
Python | 人脸识别系统 — 姿态检测
本博客为人脸识别系统的姿态检测代码解释 人脸识别系统博客汇总:人脸识别系统-博客索引 项目GitHub地址:Su-Face-Recognition: A face recognition for user logining 注意:阅读本博客前请先参考以下博客 工具安装、环境配置:人脸…...
为什么说网络安全行业是IT行业最后的红利?
前言 2023年网络安全行业的前景看起来非常乐观。根据当前的趋势和发展,一些趋势和发展可能对2023年网络安全行业产生影响: 5G技术的广泛应用:5G技术的普及将会使互联网的速度更快,同时也将带来更多的网络威胁和安全挑战。网络安全…...
谷粒商城二十四Sentinel限流熔断降级
我们在秒杀服务加的以上所有手段都是为了快,除了快之外,我们还需要保证稳定。 我们即使再快也会有一个极限值,现在假设单机下每秒处理一万个单,这已经是超高的处理能力了,秒杀服务上了五台服务器,有三台掉…...
STM32-HAL-SPI-W25Q128FV简单读写测试(2)
文章目录 一、Flash的基本读写操作1.1 向芯片中的某个地址(addr:0x02)连续写入不定长的数据并读取代码示例读写流程分析函数分析 1.2 向芯片中的某个地址(addr:0x00)写入一个数值代码示例:读写流程分析 具体的配置接上…...
网易一面:如何设计线程池?请手写一个简单线程池?
说在前面 在40岁老架构师 尼恩的读者社区(50)中,最近有小伙伴拿到了一线互联网企业如极兔、有赞、希音、百度、网易的面试资格,遇到了几个很重要的面试题: 如何设计线程池? 与之类似的、其他小伙伴遇到过的问题还有: …...
网络安全之密码学
目录 密码学 定义 密码的分类 对称加密 非对称加密 对称算法与非对称算法的优缺点 最佳解决办法 --- 用非对称加密算法加密对称加密算法的密钥 非对称加密如何解决对称加密的困境 密钥传输风险 密码管理难 常见算法 对称算法 非对称算法 完整性与身份认证最佳解决…...
第14章 项目采购管理
文章目录 采购管理包括如下几个过程14.2 编制采购计划 462编制采购计划的输出1)采购管理计划2)采购工作说明书3)采购文件 14.2.3 工作说明书(SOW) 14.3 实施采购 47414.3.2 实施采购的方法和技术 476(1&…...
Vite+Vue下的多页面入口配置
我发现多页面入口配置在网上的资料比较乱,今天正好结合我们的开源API分析工具项目(APIcat)更新情况总结一下。 更新vite.config.js 主要配置的更新是在vite.config.js里面要增加build里的rollupOptions,因为vite底层使用了rollu…...
ChatGPT背后的打工人:你不干,有的是AI干
AI“出圈” 如今,数字技术发展速度惊人,AI提高了社会生产效率,更真切地冲击到原有的生产秩序。 年初AI技术的爆发,让国内看到了进一步降本增效的希望。 国内多家互联网企业相继推出类ChatGPT产品,复旦大学邱锡鹏教授…...
【Access】Access:SQL 语句汇总
目录 一、SQL 的功能 二、考试重点 三、关系的定义 (1)新建关系 (2)删除关系 四、SQL 的「数据查询」功能 (1)基本结构 ① Select 语句的基本结构 ② Select 子句 ③ Where 子句 ④ 空值的处…...
【小样本分割 2022 ECCV】SSP
文章目录 【小样本分割 2022 ECCV】SSP摘要1. 介绍2. 相关工作3. 自支持小样本语义分割3.1 动机3.2 自支持原型-SSM3.3 自适应自支持背景原型-ASBP3.4 自支持匹配-SSL 3. 代码 【小样本分割 2022 ECCV】SSP 论文题目:Self-Support Few-Shot Semantic Segmentation 中…...
Friendlycore增加inodes数量
背景:为Nanopim1安装了core系统,tf卡大小64G,安装后正常扩展到了整个tf卡,但是在安装hass的docker显示磁盘空间不够,最终发现是inode被用完了。其inode只有960K,但是16G卡树莓派系统的inodes都是其两倍。 一…...
Latex 定理和证明类环境(amsthm)和(ntheorm)的区别
最近在写毕业论文,出现了一些定理和证明的环境的问题,问题出现在对两个包的理解程度不够的问题上: \RequirePackage{ntheorem} 1、\newtheorem*{proof}{\hspace{2em}证:} 这个是让证明失去计数原则,该命令不能用于 amsthm 2…...
Yolov8改进---注意力全家桶,小目标涨点
💡💡💡💡💡💡💡💡💡💡注意力全家桶💡💡💡💡💡💡💡💡💡💡💡 基于Yolov8的注意力机制研究,提升小目标、遮挡物、难样本等检测性能...
[Linux]网络连接、资源共享
⭐作者介绍:大二本科网络工程专业在读,持续学习Java,输出优质文章 ⭐作者主页:逐梦苍穹 ⭐所属专栏:Linux基础操作。本文主要是分享一些Linux系统常用操作,内容主要来源是学校作业,分享出来的…...
来上海一个月的记录、思考和感悟
作者 | gongyouliu 编辑 | gongyouliu 从4月3号早上来上海,到今天差不多整整一个月了,也是自己正式从杭州离职创业(我更愿意称之为自由职业者,毕竟我没有招聘全职员工,有两个朋友业余时间在帮我)的第一个月…...
学校信息化管理系统通常包含哪些功能?
学校管理信息化是现代教育发展的必然趋势,随着信息技术的飞速发展,学校管理也逐渐地实现了信息化。信息化的学校管理已经成为教育现代化建设的重要内容,也是提高学校教育教学质量和保障学生安全的重要手段。 作为一款低代码开发平台…...
Java时间类(三) -- Calendar()(日历类)
java.util.Calendar类是一个抽象类,它提供了日期计算的相关功能、获取或设置各种日历字段的方法。 protected Calendar() 构造方法为protected修饰,无法直接创建该对象。1. Calendar()的常用方法: 方法名说明static Calendar getInstance()使用默认时区和区域获取日历vo…...
【五一创作】QML、Qt Quick /Qt中绘制圆形
目录标题 Qt Quick中绘制圆形扩展知识Canvas 模块介绍Shapes 模块介绍 Qt Widgets 中绘制圆形两种方式的比较 Qt Quick中绘制圆形 有多种方法可以在 Qt Quick 中绘制圆形。以下是一些主要方法: 使用 Canvas 元素 使用 Shapes 模块: a. 使用 PathArc 和…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
boost::filesystem::path文件路径使用详解和示例
boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类,封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解,包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...
游戏开发中常见的战斗数值英文缩写对照表
游戏开发中常见的战斗数值英文缩写对照表 基础属性(Basic Attributes) 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...
