分部积分法习题
前置知识:分部积分法
例题
计算积分 I n = ∫ [ ( x + a ) 2 + b 2 ] − k d x ( n ≥ 1 ) I_n=\int [(x+a)^2+b^2]^{-k}dx \quad(n\geq 1) In=∫[(x+a)2+b2]−kdx(n≥1)
解:
\qquad 用分部积分法,对任何自然数 k ≥ 1 k\geq 1 k≥1,有
I k = ∫ d x [ ( x + a ) 2 + b 2 ] d x = x + a [ ( x + a ) 2 + b 2 ] k + 2 k ∫ ( x + a ) 2 [ ( x + a ) 2 + b 2 ] k + 1 d x \qquad I_k=\int\dfrac{dx}{[(x+a)^2+b^2]}dx=\dfrac{x+a}{[(x+a)^2+b^2]^k}+2k\int\dfrac{(x+a)^2}{[(x+a)^2+b^2]^{k+1}}dx Ik=∫[(x+a)2+b2]dxdx=[(x+a)2+b2]kx+a+2k∫[(x+a)2+b2]k+1(x+a)2dx
= x + a [ ( x + a ) 2 + b 2 ] k + 2 k ∫ [ 1 ( ( x + a ) 2 + b 2 ) k − b 2 ( ( x + a ) 2 + b 2 ) k + 1 ] d x \qquad \qquad =\dfrac{x+a}{[(x+a)^2+b^2]^k}+2k\int[\dfrac{1}{((x+a)^2+b^2)^k}-\dfrac{b^2}{((x+a)^2+b^2)^{k+1}}]dx =[(x+a)2+b2]kx+a+2k∫[((x+a)2+b2)k1−((x+a)2+b2)k+1b2]dx
= x + a [ ( x + a ) 2 + b 2 ] k + 2 k I k − 2 k b 2 ⋅ I k + 1 \qquad \qquad =\dfrac{x+a}{[(x+a)^2+b^2]^k}+2kI_k-2kb^2\cdot I_{k+1} =[(x+a)2+b2]kx+a+2kIk−2kb2⋅Ik+1
由此可得 I k I_k Ik的递推公式为
I k + 1 = 1 2 k b 2 [ x ( x 2 + b 2 ) − k + ( 2 k − 1 ) I k ] I_{k+1}=\dfrac{1}{2kb^2}[x(x^2+b^2)^{-k}+(2k-1)I_k] Ik+1=2kb21[x(x2+b2)−k+(2k−1)Ik]
当 k = 1 k=1 k=1时,直接计算可得
I 1 = ∫ 1 ( x + a ) 2 + b 2 d x = 1 b ∫ d ( x + a b ) 1 + ( x + a b ) 2 = 1 b arctan ( x + a b ) + C I_1=\int \dfrac{1}{(x+a)^2+b^2}dx=\dfrac 1b\int \dfrac{d(\frac{x+a}{b})}{1+(\frac{x+a}{b})^2}=\dfrac 1b\arctan(\dfrac{x+a}{b})+C I1=∫(x+a)2+b21dx=b1∫1+(bx+a)2d(bx+a)=b1arctan(bx+a)+C
再由递推公式可得 I 2 , I 3 . … , I n I_2,I_3.\dots,I_n I2,I3.…,In的表达式。
相关文章:
分部积分法习题
前置知识:分部积分法 例题 计算积分 I n ∫ [ ( x a ) 2 b 2 ] − k d x ( n ≥ 1 ) I_n\int [(xa)^2b^2]^{-k}dx \quad(n\geq 1) In∫[(xa)2b2]−kdx(n≥1) 解: \qquad 用分部积分法,对任何自然数 k ≥ 1 k\geq 1 k≥1,…...
C++—非递归【循环】遍历二叉树(前序,中序,后序)思路讲解+代码实现
非递归遍历二叉树 前序中序后序 接下来我们在研究如何使用循环实现遍历二叉树时,以下面的二叉树为例: 在下文的讲解中,不对如何构建这颗二叉树做讲解,直接给出代码,如果有不懂的地方欢迎私信我。 文章中的完整源代码链…...
前端002_初始化项目
1、命名和启动项目 将目录名 vue-admin-template-master 重命名为 db-manager-system 将 db-manager-system/package.json 中的 name 值改为 db-manager-system {"name": "db-manager-system","version": "1.0.1","descriptio…...
组合设计模式
组合模式 组合模式定义使用场景1、文件系统的目录结构:2、组织架构图:3、菜单和菜单项:4、使用场景总结: 角色定义Component 抽象构件角色:Leaf 叶子构件:Composite 树枝构件: 需求背景代码实现Component(抽象构件角色…...
【MySQL】多表查询
上一篇介绍了外键约束,外键约束是用于连接两张数据表的,所以在此基础上就有了多表查询 之前的查询都是单表查询,这里我们会将多个数据表的数据结果返回在一张表上 文章目录 1.多表关系2.多表查询2.1 多表查询分类2.2 内连接2.3 外连接2.4 自连接2.5 联合查询2.6子查询 1.多表关…...
关于在线帮助中心你需要思考以下几个问题
搭建帮助中心是大多数企业都在尝试做的事情,它的重要性对于企业来说不言而喻。现在对于企业来说,搭建帮助中心或许不是什么难事,但是关于帮助中心,有几个问题需要思考清楚,才能让其发挥最大的价值。 一、如何让用户养成…...
基于FPGA+JESD204B 时钟双通道 6.4GSPS 高速数据采集模块设计(一)总体方案
本章将根据高速数据采集指标要求,分析并确定高速数据采集模块的设计方 案,由此分析数据存储需求及存储速度需求给出高速大容量数据存储方案,完成 双通道高速数据采集模块总体设计方案,并综合采集、存储方案及 AXIe 接口需求 …...
二、Spring Cloud Alibaba环境搭建
一、依赖环境 SpringCloud Alibaba 依赖 Java 环境来运行。还需要为此配置 Maven环境,请确保是在以下版本环境中安装使用。 64 bit JDK 1.8;Maven 3.2.x。 spring-cloud-alibaba相关网址: 地址:https://github.com/alibaba/spring-cloud-…...
瑞萨e2studio(24)----电容触摸配置(1)
瑞萨e2studio.24--电容触摸配置1 概述硬件准备新建工程工程模板保存工程路径芯片配置工程模板选择时钟配置添加TOUCH驱动配置CapTouch开启调优界面启动 CapTouch 调优通过电容触摸点亮LED 概述 这篇文档将创建一个使用 e2 studio 集成 QE 的电容式触摸应用示例,通…...
数据开发常见问题
目录 环境变量过多或者参数值过长时,为什么提交作业失败? 为什么Shell作业状态和相关的YARN Application状态不一致? 创建作业和执行计划的区别是什么? 如何查看作业运行记录? 如何在OSS上查看日志? 读…...
Ae:橡皮擦工具
橡皮擦工具 Eraser Tool 快捷键:Ctrl B 橡皮擦工具 Eraser Tool在工作原理上同 Ae 中的其它绘画工具(画笔、仿制图章)工具基本一致,都是通过绘制路径,然后基于此路径进行描边(可统称为“绘画描边”&…...
干货 | 正确引用参考文献的6大技巧
Hello,大家好! 这里是壹脑云科研圈,我是喵君姐姐~ 对于学术研究而言,正确引用参考文献非常重要。参考文献不仅展现了自己的学术水平,同时也给研究定位,突显研究在前人研究基础上作出的贡献。 …...
区块链系统探索之路:基于椭圆曲线的私钥与公钥生成
前两节我们探讨了抽象代数的重要概念:有限域,然后研究了基于椭圆曲线上点的怪异”“操作,两者表面看起来牛马不相及,实际上两者在逻辑上有着紧密的联系,简单来说如果我们在椭圆曲线上取一点G,然后让它跟自己做”“操作…...
Linux命令集(Linux常用命令--echo指令篇)
Linux命令集(Linux常用命令--echo指令篇) Linux常用命令集(echo指令篇)2.echo(echo)1. 输出自定义内容2. 禁止输出末尾换行符3. 转义功能4. 与特殊字符配合使用实现其余功能 Linux常用命令集(echo指令篇) 如…...
【电子学会】2023年03月图形化一级 -- 甲壳虫走迷宫
甲壳虫走迷宫 1. 准备工作 (1)绘制如图所示迷宫背景图,入口在左下角,出口在右上角,线段的颜色为黑色; (2)删除默认小猫角色,添加角色:Beetle; …...
老外从神话原型中提取的12个品牌个性
老外从神话原型中提取的12个品牌个性 也是西方视角,需要本土化 参照心理学大师荣格的理论:心理学潜意识派 趣讲大白话:品牌的调调是啥 【趣讲信息科技151期】 **************************** 12种原型又归属于4种人性动机。 1、稳定࿰…...
unity中的Quaternion.AngleAxis
介绍 unity中的Quaternion.AngleAxis 方法 Quaternion.AngleAxis() 函数是 Unity 引擎中的一个数学函数,用于创建一个绕着某个轴旋转一定角度的旋转四元数。在游戏开发中,经常会用到该函数来旋转物体或计算旋转后的方向向量。 该函数的函数原型为&…...
如何设置渗透测试实验室
导语:在本文中,我将介绍设置渗透实验室的最快方法。在开始下载和安装之前,必须确保你使用的计算机符合某些渗透测试的要求,这可以确保你可以一次运行多个虚拟机而不会出现任何问题。 在本文中,我将介绍设置渗透实验室的…...
Java时间类(八)-- Instant (时间戳类)(常用于Date与LocalDateTime的相互转化)
目录 1. Instant的概述: 2. Instant的常见方法: 3. Date --->Instant--->LocalDateTime 4. LocalDateTime --->Instant--->Date 1. Instant的概述...
C++模板
模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码。模板的目的是为了提高复用性,将类型参数化,函数模板作用:建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
