当前位置: 首页 > news >正文

分部积分法习题

前置知识:分部积分法

例题

计算积分 I n = ∫ [ ( x + a ) 2 + b 2 ] − k d x ( n ≥ 1 ) I_n=\int [(x+a)^2+b^2]^{-k}dx \quad(n\geq 1) In=[(x+a)2+b2]kdx(n1)

解:
\qquad 用分部积分法,对任何自然数 k ≥ 1 k\geq 1 k1,有

I k = ∫ d x [ ( x + a ) 2 + b 2 ] d x = x + a [ ( x + a ) 2 + b 2 ] k + 2 k ∫ ( x + a ) 2 [ ( x + a ) 2 + b 2 ] k + 1 d x \qquad I_k=\int\dfrac{dx}{[(x+a)^2+b^2]}dx=\dfrac{x+a}{[(x+a)^2+b^2]^k}+2k\int\dfrac{(x+a)^2}{[(x+a)^2+b^2]^{k+1}}dx Ik=[(x+a)2+b2]dxdx=[(x+a)2+b2]kx+a+2k[(x+a)2+b2]k+1(x+a)2dx

= x + a [ ( x + a ) 2 + b 2 ] k + 2 k ∫ [ 1 ( ( x + a ) 2 + b 2 ) k − b 2 ( ( x + a ) 2 + b 2 ) k + 1 ] d x \qquad \qquad =\dfrac{x+a}{[(x+a)^2+b^2]^k}+2k\int[\dfrac{1}{((x+a)^2+b^2)^k}-\dfrac{b^2}{((x+a)^2+b^2)^{k+1}}]dx =[(x+a)2+b2]kx+a+2k[((x+a)2+b2)k1((x+a)2+b2)k+1b2]dx

= x + a [ ( x + a ) 2 + b 2 ] k + 2 k I k − 2 k b 2 ⋅ I k + 1 \qquad \qquad =\dfrac{x+a}{[(x+a)^2+b^2]^k}+2kI_k-2kb^2\cdot I_{k+1} =[(x+a)2+b2]kx+a+2kIk2kb2Ik+1

由此可得 I k I_k Ik的递推公式为

I k + 1 = 1 2 k b 2 [ x ( x 2 + b 2 ) − k + ( 2 k − 1 ) I k ] I_{k+1}=\dfrac{1}{2kb^2}[x(x^2+b^2)^{-k}+(2k-1)I_k] Ik+1=2kb21[x(x2+b2)k+(2k1)Ik]

k = 1 k=1 k=1时,直接计算可得

I 1 = ∫ 1 ( x + a ) 2 + b 2 d x = 1 b ∫ d ( x + a b ) 1 + ( x + a b ) 2 = 1 b arctan ⁡ ( x + a b ) + C I_1=\int \dfrac{1}{(x+a)^2+b^2}dx=\dfrac 1b\int \dfrac{d(\frac{x+a}{b})}{1+(\frac{x+a}{b})^2}=\dfrac 1b\arctan(\dfrac{x+a}{b})+C I1=(x+a)2+b21dx=b11+(bx+a)2d(bx+a)=b1arctan(bx+a)+C

再由递推公式可得 I 2 , I 3 . … , I n I_2,I_3.\dots,I_n I2,I3.,In的表达式。

相关文章:

分部积分法习题

前置知识:分部积分法 例题 计算积分 I n ∫ [ ( x a ) 2 b 2 ] − k d x ( n ≥ 1 ) I_n\int [(xa)^2b^2]^{-k}dx \quad(n\geq 1) In​∫[(xa)2b2]−kdx(n≥1) 解: \qquad 用分部积分法,对任何自然数 k ≥ 1 k\geq 1 k≥1,…...

C++—非递归【循环】遍历二叉树(前序,中序,后序)思路讲解+代码实现

非递归遍历二叉树 前序中序后序 接下来我们在研究如何使用循环实现遍历二叉树时,以下面的二叉树为例: 在下文的讲解中,不对如何构建这颗二叉树做讲解,直接给出代码,如果有不懂的地方欢迎私信我。 文章中的完整源代码链…...

前端002_初始化项目

1、命名和启动项目 将目录名 vue-admin-template-master 重命名为 db-manager-system 将 db-manager-system/package.json 中的 name 值改为 db-manager-system {"name": "db-manager-system","version": "1.0.1","descriptio…...

组合设计模式

组合模式 组合模式定义使用场景1、文件系统的目录结构:2、组织架构图:3、菜单和菜单项:4、使用场景总结: 角色定义Component 抽象构件角色:Leaf 叶子构件:Composite 树枝构件: 需求背景代码实现Component(抽象构件角色…...

【MySQL】多表查询

上一篇介绍了外键约束,外键约束是用于连接两张数据表的,所以在此基础上就有了多表查询 之前的查询都是单表查询,这里我们会将多个数据表的数据结果返回在一张表上 文章目录 1.多表关系2.多表查询2.1 多表查询分类2.2 内连接2.3 外连接2.4 自连接2.5 联合查询2.6子查询 1.多表关…...

关于在线帮助中心你需要思考以下几个问题

搭建帮助中心是大多数企业都在尝试做的事情,它的重要性对于企业来说不言而喻。现在对于企业来说,搭建帮助中心或许不是什么难事,但是关于帮助中心,有几个问题需要思考清楚,才能让其发挥最大的价值。 一、如何让用户养成…...

基于FPGA+JESD204B 时钟双通道 6.4GSPS 高速数据采集模块设计(一)总体方案

本章将根据高速数据采集指标要求,分析并确定高速数据采集模块的设计方 案,由此分析数据存储需求及存储速度需求给出高速大容量数据存储方案,完成 双通道高速数据采集模块总体设计方案,并综合采集、存储方案及 AXIe 接口需求 …...

二、Spring Cloud Alibaba环境搭建

一、依赖环境 SpringCloud Alibaba 依赖 Java 环境来运行。还需要为此配置 Maven环境,请确保是在以下版本环境中安装使用。 64 bit JDK 1.8;Maven 3.2.x。 spring-cloud-alibaba相关网址: 地址:https://github.com/alibaba/spring-cloud-…...

瑞萨e2studio(24)----电容触摸配置(1)

瑞萨e2studio.24--电容触摸配置1 概述硬件准备新建工程工程模板保存工程路径芯片配置工程模板选择时钟配置添加TOUCH驱动配置CapTouch开启调优界面启动 CapTouch 调优通过电容触摸点亮LED 概述 这篇文档将创建一个使用 e2 studio 集成 QE 的电容式触摸应用示例,通…...

数据开发常见问题

目录 环境变量过多或者参数值过长时,为什么提交作业失败? 为什么Shell作业状态和相关的YARN Application状态不一致? 创建作业和执行计划的区别是什么? 如何查看作业运行记录? 如何在OSS上查看日志? 读…...

Ae:橡皮擦工具

橡皮擦工具 Eraser Tool 快捷键:Ctrl B 橡皮擦工具 Eraser Tool在工作原理上同 Ae 中的其它绘画工具(画笔、仿制图章)工具基本一致,都是通过绘制路径,然后基于此路径进行描边(可统称为“绘画描边”&…...

干货 | 正确引用参考文献的6大技巧

Hello,大家好! 这里是壹脑云科研圈,我是喵君姐姐~ 对于学术研究而言,正确引用参考文献非常重要。参考文献不仅展现了自己的学术水平,同时也给研究定位,突显研究在前人研究基础上作出的贡献。 …...

区块链系统探索之路:基于椭圆曲线的私钥与公钥生成

前两节我们探讨了抽象代数的重要概念:有限域,然后研究了基于椭圆曲线上点的怪异”“操作,两者表面看起来牛马不相及,实际上两者在逻辑上有着紧密的联系,简单来说如果我们在椭圆曲线上取一点G,然后让它跟自己做”“操作…...

Linux命令集(Linux常用命令--echo指令篇)

Linux命令集(Linux常用命令--echo指令篇) Linux常用命令集(echo指令篇)2.echo(echo)1. 输出自定义内容2. 禁止输出末尾换行符3. 转义功能4. 与特殊字符配合使用实现其余功能 Linux常用命令集(echo指令篇) 如…...

【电子学会】2023年03月图形化一级 -- 甲壳虫走迷宫

甲壳虫走迷宫 1. 准备工作 (1)绘制如图所示迷宫背景图,入口在左下角,出口在右上角,线段的颜色为黑色; (2)删除默认小猫角色,添加角色:Beetle; …...

老外从神话原型中提取的12个品牌个性

老外从神话原型中提取的12个品牌个性 也是西方视角,需要本土化 参照心理学大师荣格的理论:心理学潜意识派 趣讲大白话:品牌的调调是啥 【趣讲信息科技151期】 **************************** 12种原型又归属于4种人性动机。 1、稳定&#xff0…...

unity中的Quaternion.AngleAxis

介绍 unity中的Quaternion.AngleAxis 方法 Quaternion.AngleAxis() 函数是 Unity 引擎中的一个数学函数,用于创建一个绕着某个轴旋转一定角度的旋转四元数。在游戏开发中,经常会用到该函数来旋转物体或计算旋转后的方向向量。 该函数的函数原型为&…...

如何设置渗透测试实验室

导语:在本文中,我将介绍设置渗透实验室的最快方法。在开始下载和安装之前,必须确保你使用的计算机符合某些渗透测试的要求,这可以确保你可以一次运行多个虚拟机而不会出现任何问题。 在本文中,我将介绍设置渗透实验室的…...

Java时间类(八)-- Instant (时间戳类)(常用于Date与LocalDateTime的相互转化)

目录 1. Instant的概述: 2. Instant的常见方法: 3. Date --->Instant--->LocalDateTime 4. LocalDateTime --->Instant--->Date 1. Instant的概述...

C++模板

模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码。模板的目的是为了提高复用性,将类型参数化,函数模板作用:建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

反射获取方法和属性

Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

腾讯云V3签名

想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...