当前位置: 首页 > news >正文

102-Linux_I/O复用方法之poll

文章目录

  • 1.poll系统调用的作用
  • 2.poll的原型
  • 3.poll支持的事件类型
  • 4.poll实现TCP服务器
    • (1)服务器端代码:
    • (2)客户端代码:
    • (3)运行结果截图:

1.poll系统调用的作用

poll 系统调用和 select 类似,也是在指定时间内轮询一定数量的文件描述符,以测试其中是否有就绪者。

2.poll的原型

#include <poll.h>
int poll(struct pollfd *fds, nfds_t nfds, int timeout);

poll 系统调用成功返回就绪文件描述符的总数,超时返回 0,失败返回-1
nfds 参数指定被监听事件集合 fds 的大小。
timeout 参数指定 poll 的超时值,单位是毫秒,timeout 为-1 时,poll 调用将永久阻塞,直到某个事件发生,timeout 为 0 时,poll 调用将立即返回。

fds 参数是一个 struct pollfd 结构类型的数组,它指定所有用户感兴趣的文件描述符上发生的可读、可写和异常等事件。pollfd 结构体定义如下:
struct pollfd
{
int fd; // 文件描述符
short events; // 注册的关注事件类型
short revents; // 实际发生的事件类型,由内核填充
};
其中,fd 成员指定文件描述符,events 成员告诉 poll 监听 fd 上的哪些事件类型。
它是一系列事件的按位或,revents 成员则有内核修改,通知应用程序 fd 上实际发生了哪些事件。poll 支持的事件类型如下

3.poll支持的事件类型

在这里插入图片描述

4.poll实现TCP服务器

(1)服务器端代码:

#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
#include<pthread.h>
#include<string.h>
#include<arpa/inet.h>
#include<netinet/in.h>
#include<sys/select.h>
#include<sys/socket.h>
#include<poll.h>#define MAXFD 10
int socket_init();
int accept_client(int sockfd);
void fds_init(struct pollfd fds[]);
void fds_add(int fd,struct pollfd fds[]);
void fds_del(int fd,struct pollfd fds[]);
void recv_data(int c,struct pollfd fds[]);
int main()
{int sockfd=socket_init();if(sockfd==-1){exit(0);}struct pollfd fds[MAXFD];fds_init(fds);fds_add(sockfd,fds);//sockfd->fdwhile(1){int  n=poll(fds,MAXFD,5000);if(n==-1){printf("poll error\n");}if(n==0){printf("time out\n");}else{for(int i=0;i<MAXFD;i++){if(fds[i].fd==-1){continue;}if(fds[i].revents & POLLIN){if(fds[i].fd == sockfd){int c=accept_client(sockfd);if(c!=-1){fds_add(c,fds);}}else{recv_data(fds[i].fd,fds);}}}}}}int socket_init()
{int sockfd=socket(AF_INET,SOCK_STREAM,0);if(sockfd==-1){return -1;}struct sockaddr_in saddr;memset(&saddr,0,sizeof(saddr));saddr.sin_family=AF_INET;saddr.sin_port=htons(5678);saddr.sin_addr.s_addr=inet_addr("127.0.0.1");int res=bind(sockfd,(struct sockaddr*)&saddr,sizeof(saddr));if(res==-1){printf("bind error\n");return -1;}res=listen(sockfd,5);if(res==-1){return -1;}return sockfd;
}
int accept_client(int sockfd)
{struct sockaddr_in caddr;int len=sizeof(caddr);int c=accept(sockfd,(struct sockaddr*)&caddr,&len);return c;
}void fds_init(struct pollfd fds[])
{for(int i=0;i<MAXFD;i++){fds[i].fd=-1;fds[i].events=0;fds[i].revents=0;}
}void fds_add(int fd,struct pollfd fds[])
{for(int i=0;i<MAXFD;i++){if(fds[i].fd==-1){fds[i].fd=fd;fds[i].events=POLLIN;fds[i].revents=0;break;}}
}void fds_del(int fd,struct pollfd fds[])
{for(int i=0;i<MAXFD;i++){if(fds[i].fd==fd){fds[i].fd=-1;fds[i].events=0;fds[i].revents=0;break;}}
}void recv_data(int c,struct pollfd fds[])
{char buff[128];int n=recv(c,buff,127,0);if(n<=0){close(c);fds_del(c,fds);printf("client close\n");return ;}printf("recv:%s\n",buff);send(c,"ok",2,0);
}

(2)客户端代码:

#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
#include<string.h>
#include<sys/socket.h>
#include<arpa/inet.h>
#include<netinet/in.h>int socket_init();int main()
{int sockfd=socket_init();if(sockfd==-1){exit(0);}while(1){printf("input:");char buff[128]={0}; fgets(buff,127,stdin);if(strncmp(buff,"end",3)==0){break;}send(sockfd,buff,strlen(buff)-1,0);memset(buff,0,128);recv(sockfd,buff,127,0);printf("read:%s\n",buff);}close(sockfd);exit(0);}int socket_init()
{int sockfd=socket(AF_INET,SOCK_STREAM,0);//tcp流式服务if(sockfd==-1){printf("socket errror\n");return -1;}struct sockaddr_in saddr;memset(&saddr,0,sizeof(saddr));saddr.sin_family=AF_INET;saddr.sin_port=htons(5678);saddr.sin_addr.s_addr=inet_addr("127.0.0.1");int res=connect(sockfd,(struct sockaddr*)&saddr,sizeof(saddr));if(res==-1){printf("connect error\n");return -1;}return sockfd;
}

(3)运行结果截图:

在这里插入图片描述

相关文章:

102-Linux_I/O复用方法之poll

文章目录 1.poll系统调用的作用2.poll的原型3.poll支持的事件类型4.poll实现TCP服务器(1)服务器端代码:(2)客户端代码:(3)运行结果截图: 1.poll系统调用的作用 poll 系统调用和 select 类似&#xff0c;也是在指定时间内轮询一定数量的文件描述符&#xff0c;以测试其中是否有…...

【VAR模型 | 时间序列】帮助文档:VAR模型的引入和Python实践(含源代码)

向量自回归 (VAR) 是一种随机过程模型&#xff0c;用于捕获多个时间序列之间的线性相互依赖性。 VAR 模型通过允许多个进化变量来概括单变量自回归模型&#xff08;AR 模型&#xff09;。 VAR 中的所有变量都以相同的方式进入模型&#xff1a;每个变量都有一个方程式&#xff…...

Spark任务提交流程

1. yarn-client Driver在任务提交的本地机器上运行&#xff0c;Driver启动后会和ResourceManager通讯&#xff0c;申请启动ApplicationMaster; 随后ResourceManager分配Container&#xff0c;在合适的NodeManager上启动ApplicationMaster&#xff0c;此时的ApplicationMaster的…...

python相对路径与绝对路径

9.1 Python 绝对路径与相对路径 - 知乎 (zhihu.com) 目录 1. 绝对路径 1.1 概念 1.2 用绝对路径打开文件 1.2 相对路径 1.3 python路径表示的斜杠问题 1. 绝对路径 1.1 概念 绝对路径 指完整的描述文件位置的路径。绝对路径就是文件或文件夹在硬盘上的完整路径。 在 Win…...

SPSS如何进行基本统计分析之案例实训?

文章目录 0.引言1.描述性分析2.频数分析3.探索分析4.列联表分析5.比率分析 0.引言 因科研等多场景需要进行数据统计分析&#xff0c;笔者对SPSS进行了学习&#xff0c;本文通过《SPSS统计分析从入门到精通》及其配套素材结合网上相关资料进行学习笔记总结&#xff0c;本文对基本…...

Python项目实战篇——常用验证码标注和识别(需求分析和实现思路)

前言&#xff1a;验证码识别和标注是现在网络安全中的一个重要任务&#xff0c;尤其是在一些电商平台和在线支付等场景中&#xff0c;验证码的安全性至关重要。本文将介绍如何使用Python实现常用的验证码标注和识别&#xff0c;以便为自己的项目提供参考。 一、需求分析 1、验证…...

MySQL基础(六)多表查询

多表查询&#xff0c;也称为关联查询&#xff0c;指两个或更多个表一起完成查询操作。 前提条件&#xff1a;这些一起查询的表之间是有关系的&#xff08;一对一、一对多&#xff09;&#xff0c;它们之间一定是有关联字段&#xff0c;这个关联字段可能建立了外键&#xff0c;…...

零死角玩转stm32中级篇3-SPI总线

本篇博文目录: 一.基础知识1.什么是SPI2.SPI和IIC有什么不同3.SPI的优缺点4.SPI是怎么实现通信的5.SPI 数据传输的步骤6.SPI菊花链7.通过SPI实现数据的读和写 二.STM32F103C8T6芯片SPI协议案例代码 一.基础知识 1.什么是SPI SPI&#xff08;Serial Peripheral Interface&#…...

顺序表功能实现(入手版详解)

&#x1f349;博客主页&#xff1a;阿博历练记 &#x1f4d6;文章专栏&#xff1a;数据结构与算法 &#x1f69a;代码仓库&#xff1a;阿博编程日记 &#x1f339;欢迎关注&#xff1a;欢迎友友们点赞收藏关注哦 文章目录 &#x1f353;前言✨顺序表&#x1f50d;1.顺序表的整体…...

Java 中的线程是什么,如何创建和管理线程-下(十三)

书接上文 CompletableFuture CompletableFuture 是 Java 8 中新增的类&#xff0c;提供了更为强大的异步编程支持。它可以将多个异步任务组合成一个整体&#xff0c;并且可以处理异常情况。 例如&#xff0c;可以使用 CompletableFuture 来实现异步任务的串行执行&#xff1…...

为什么我的Windows 10 便签不支持更改字体?

Windows便签是一款常用的记录工具&#xff0c;可以帮助我们快速记录一些重要的信息。在使用Windows便签时&#xff0c;如果你想要更好地呈现你的信息&#xff0c;可以通过设置字体来达到这个效果。本文将介绍Windows便签字体设置的相关知识&#xff0c;希望对你有所帮助。 1、打…...

野火STM32电机系列(六)Cubemx配置ADC规则和注入通道

前文已经配置了GPIO、编码器 本节讲解CubeMXADC规则和注入通道 本文adc注入通道采用定时器触发&#xff0c;因此在上文定时器配置的基础上进行 常规信号&#xff08;温度等&#xff09;使用带DMA的常规通道连续采样 注入采样由定时器触发&#xff0c;采集电机三相电流&…...

预制菜,巨头们的新赛场

俗话说“民以食为天”&#xff0c;饮食对于大众的重要性自然是无需赘述。然而&#xff0c;随着生活节奏的加快&#xff0c;越来越多年轻人没有时间和精力去烹制菜肴&#xff0c;这也是外卖行业持续火热的重要原因之一。尽管如此&#xff0c;随着消费者健康意识的持续提升&#…...

英语语法第一章之英语语法综述

英语的任何句型基本都可以翻译成 什么怎么样 &#xff0c;在这里什么就是我们常说的主语&#xff0c;而怎么样就是我们常说的谓语; 可能有些小伙伴会反问&#xff0c;不是主谓宾吗&#xff1f;别急等我慢慢讲解 在这里谓语也有很有多的不同的动作 可以独立完成的动作 句型&am…...

ChatGPT被淘汰了?Auto-GPT到底有多强

大家好&#xff0c;我是可夫小子&#xff0c;关注AIGC、读书和自媒体。解锁更多ChatGPT、AI绘画玩法。 说Auto-GPT淘汰了ChatGPT了&#xff0c;显然是营销文案里面的标题党。毕竟它还是基于ChatGPT的API&#xff0c;某种意义只是基于ChatGPT能力的应用。但最近&#xff0c;Auto…...

unity NGUI使用方法

基本用法 很多基本模块比如按钮、slider等都能从Prefab中直接拖拽到场景中实现&#xff0c;但都需要有一个Collider&#xff08;Prefab已经自带&#xff09; 因为不仅是UI&#xff0c;所有带有Collider的游戏物体都能接收到OnClick&#xff0c; OnPress这样的事件——前提是需…...

软件测试技术(五)软件测试流程

软件测试流程 软件测试流程如下&#xff1a; 测试计划测试设计测试执行 单元测试集成测试确认测试系统测试验收测试回归测试验证活动 测试计划 测试计划由测试负责人来编写&#xff0c;用于确定各个测试阶段的目标和策略。这个过程将输出测试计划&#xff0c;明确要完成的测…...

Redis缓存穿透和雪崩

Redis缓存穿透和雪崩 Redis缓存的使用&#xff0c;极大的提升了应用程序的性能和效率&#xff0c;特别是数据查询方面。但同时&#xff0c;它也带来了一些问题。其中&#xff0c;最要害的问题&#xff0c;就是数据的一致性问题&#xff0c;从严格意义上讲&#xff0c;这个问题…...

【C++】set和map的使用

对于STL容器来说&#xff0c;有很多相似的功能&#xff0c;所以这里主要将与之前不同的功能说清楚 文章目录 1.对于set与map的简单理解2. setinsert迭代器遍历countmultisetinsertfindcount 3. mapinsert与迭代器的使用统计水果次数 operator []operator[]的实现理解对整体的拆…...

大学生学java编程的就业前景怎么样?我来聊聊自己的见解

今天兴哥想跟大家分享一个话题&#xff0c;就是学java到底好不好找工作。因为我发现很多粉丝朋友&#xff0c;之前可能并不是从事IT行业的&#xff0c;然后想转行来做这一行&#xff0c;或者是有些大四即将面临毕业的老哥&#xff0c;可能大学没有好好学习吧&#xff0c;然后专…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...

验证redis数据结构

一、功能验证 1.验证redis的数据结构&#xff08;如字符串、列表、哈希、集合、有序集合等&#xff09;是否按照预期工作。 2、常见的数据结构验证方法&#xff1a; ①字符串&#xff08;string&#xff09; 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...