当前位置: 首页 > news >正文

路径规划算法:基于灰狼优化的路径规划算法- 附代码

路径规划算法:基于灰狼优化的路径规划算法- 附代码

文章目录

  • 路径规划算法:基于灰狼优化的路径规划算法- 附代码
    • 1.算法原理
      • 1.1 环境设定
      • 1.2 约束条件
      • 1.3 适应度函数
    • 2.算法结果
    • 3.MATLAB代码
    • 4.参考文献

摘要:本文主要介绍利用智能优化算法灰狼算法来进行路径规划。

1.算法原理

灰狼算法具体原理请参照:https://blog.csdn.net/u011835903/article/details/107716390

1.1 环境设定

在移动机器人的路径优化中,每个优化算法的解代表机器人的一条运动路径。优化算法会通过优化计算在众多路径中找出一条最优路径。
优化算法的设定必须和机器人运动环境模型相对应。不失一般性,假设在用栅格法对机器人运动环境建模后得出的结果是 m×n 的矩形区域,坐标值从 1 开始,如图1 。其中坐标原点栅格代表机器人的初始位置,坐标 (m,n)对应的栅格代表机器人的移动目标位置。优化算法设定的一个重要内容是确定优化算法的数学表达形式,在这里这个问题转化为用一个向量表示机器人的移动路径。经过分析发现,尽管栅格法建立的模型对空间进行了离散化,但本质上机器人的移动路径依然是连续的。

在这里插入图片描述

图1.栅格地图

1.2 约束条件

对于机器人的路径优化来说,其运动路径必须局限在栅格空间内,即搜索不能越过栅格的矩形边界。此外,还应受障碍物的限制,即机器人的运动轨迹不能穿过存在障碍物的栅格区域。

1.3 适应度函数

在本文的建模方法中,本文路径规划目标是路径长度最短。路径的长度可以表示为:

L ( P a t h ) = ∑ i = 0 n − 1 ( x l i + 1 − x l i ) 2 + ( y l i + 1 − y l i ) 2 (1) L(Path) = \sum_{i=0}^{n-1}\sqrt{(xl_{i+1} - xl_i)^2 + (yl_{i+1} - yl_{i})^2}\tag{1} L(Path)=i=0n1(xli+1xli)2+(yli+1yli)2 (1)
其中(x,y)是路径中间点的坐标

利用灰狼算法对上式进行寻优,找到最短路径。灰狼算法参数设定如下:

%% 灰狼算法参数设置
dim=length(noLM);%维度,即为非障碍物个数。
numLM0=round((EndPoint(1)-StartPoint(1))/4);%每次迭代选取的的中间路径点个数,可调
lb=0;%下边界
ub=1;%上边界
Max_iteration = 100;%最大迭代次数
SearchAgents_no = 30;%种群数量
fobj = @(x)fun(x,noS,noE,numLM0,net);%适应度函数

2.算法结果

在这里插入图片描述

3.MATLAB代码

本程序中,支持1.地图任意创建保存。2.其实点任意更改。

4.参考文献

[1]罗阳阳,彭晓燕.基于改进PSO的四轮移动机器人全局路径规划[J].计算机仿真,2020,37(07):373-379.

[2]鲁丹. 粒子群算法在移动机器人路径规划中的应用研究[D].武汉科技大学,2009.

-379.

[2]鲁丹. 粒子群算法在移动机器人路径规划中的应用研究[D].武汉科技大学,2009.

相关文章:

路径规划算法:基于灰狼优化的路径规划算法- 附代码

路径规划算法:基于灰狼优化的路径规划算法- 附代码 文章目录 路径规划算法:基于灰狼优化的路径规划算法- 附代码1.算法原理1.1 环境设定1.2 约束条件1.3 适应度函数 2.算法结果3.MATLAB代码4.参考文献 摘要:本文主要介绍利用智能优化算法灰狼…...

推荐系统综述

目录 推荐系统架构1、传统推荐方式1.1 基于内容推荐(Content-Based recommendation,CB)1.2 协同过滤推荐(Collaborative Filtering recommendation, CF)1.2.0 UserCF举例:1. 2. 1 基于内存的推荐…...

SQLIST数据库编程

目录 数据库简介 1.常用数据库 2. SQLite基础 3.创建SQLite数据库 虚拟中sqlite3安装 基础SQL语句使用 sqlite3编程 数据库简介 1.常用数据库 大型数据库 :Oracle 中型数据库 :Server是微软开发的数据库产品,主要支持windows平台 小型数据库…...

vue2中操作对象的方法

在 Vue2 中,我们可以使用以下方法来操作对象: Vue.set(object, key, value):用于在 Vue 实例中添加响应式属性。它会确保添加的属性是响应式的,并触发视图更新。 Vue.delete(object, key):用于从 Vue 实例中删除属性。…...

左值引用、右值引用,std::move() 的汇编解释

1:左值引用 引用其实还是指针,但回避了指针这个名字。由编译器完成从地址中取值。以vs2019反汇编: 如图,指针和引用的汇编代码完全一样。但引用在高级语言层面更友好,对人脑。比如可以少写一个 * 号和 -> 。 &…...

LiangGaRy-学习笔记-Day11

LiangGaRy-学习笔记-Day11 1、课前回顾 1.1、脚本回顾讲解 题目: 脚本实现搭建LAMP架构可以写一段,后试一段引入变量、函数、尝试增删改查手工执行一遍 [rootNode1 ~]# vim auto_lanmp.sh #!/bin/bash #Author By LiangGaRy #2023年5月7日 #Usage …...

【异常解决】浏览器无法访问此网站ERR_UNSAFE_PORT/网页可能无法连接,或者它已永久性地移动到了新网址问题解决方案

浏览器无法访问此网站ERR_UNSAFE_PORT问题解决方案 一、问题描述二、问题原因三、解决方案3.1 方案1修改服务器访问端口号(推荐)3.2 方案2修改浏览器设置3.2.1 Chrome浏览器3.2.2 Firefox浏览器3.2.3 Edge浏览器 一、问题描述 访问某一个特定的网址之后…...

Python函数的参数

定义一个函数非常简单,但是怎么定义一个函数,需要什么参数,怎么去调用却是我们需要去思考的问题。 如同大多数语言一样(如 Java),Python 也提供了多种参数的设定(如:默认值参数、关…...

【Hive大数据】Hive分区表与分桶表使用详解

目录 一、分区概念产生背景 二、分区表特点 三、分区表类型 3.1 单分区 3.2 多分区 四、动态分区与静态分区 4.1 静态分区【静态加载】 4.1.1 操作演示 4.2 多重分区 4.2.1 操作演示 4.3 分区数据动态加载 4.3.1 分区表数据加载 -- 动态分区 4.3.2 操作演示 五、…...

C#NPOI操作Excel详解

C# NPOI 是一个基于 .NET Framework 的 Excel 和 Word 操作库。它不仅可以读取和写入 Excel 和 Word 文件,还可以对 Excel 和 Word 文件进行格式化和样式编辑,支持多种常见的文件格式,如XLS,XLSX等。本篇文章将针对C# NPOI操作Exc…...

CSS中文字体 Unicode 编码表

一、简介 CSS(层叠样式表)是用于样式化Web页面的强大工具,它可以用来控制页面的外观和行为。在CSS中,可以使用多种字体来设置文本的外观和格式,包括中文字体。中文字体的实现需要引入相应的字体文件,并且需…...

《微服务实战》 第四章 Spring Cloud Netflix 之 Eureka

前言 Eureka 是 Netflix 公司开发的一款开源的服务注册与发现组件。 Spring Cloud 使用 Spring Boot 思想为 Eureka 增加了自动化配置,开发人员只需要引入相关依赖和注解,就能将 Spring Boot 构建的微服务轻松地与 Eureka 进行整合。 1、Eureka 两大组…...

11. 深入理解并发编程-AQS与JMM

AQS (AbstractQueuedSynchronizer) 他的实现类诸如: CountDownLatch、ThreadLocalPool和ReentrantLock 在这些类中,AQS都是以内部类的形式存在的 AQS使用了模板方法设计模式 例子: 做蛋糕分为3个步骤,定一个抽象类,重写3个方法,做模型、烘焙和涂抹原料,然后在另外1个方法做蛋糕…...

深度解耦:使用Jetpack新技术Hilt实现依赖注入

注入解耦是一种软件设计模式,旨在将应用程序的不同组件解耦。通过采用依赖注入、控制反转、面向接口编程等技术,注入解耦模式可以帮助开发人员将应用程序分解为可重用和可扩展的组件。这样做可以减少代码的耦合度,提高模块化和可测试性&#…...

C++ 构造函数-2

构造函数-2 构造函数体赋值 在对象创建的时候,编译器会调用构造函数,给对象当中的成员赋一个合适的初始值。 class Date { public: Date(int year, int month, int day) { _year year; _month month; _day day; } private: int _year; int _month; i…...

网安笔记 08 key management

Key Management —— 不考 网络加密方法 1.1 链路加密 特点: 两个相邻点之间数据进行加密保护 不同节点对密码机和Key不一定同中间节点上,先解密后加密报文报头可一起加密节点内部,消息以明文存在密钥分配困难保密及需求数量大 缺点&…...

Linux socket

百度百科对于Socket的介绍 套接字(socket)是一个抽象层,应用程序可以通过它发送或接收数据,可对其进行像对文件一样的打开、读写和关闭等操作。套接字允许应用程序将I/O插入到网络中,并与网络中的其他应用程序进行通信…...

14.构造器的排序分组.子查询

学习要点: 1.排序分组 2.子查询 本节课我们来开始学习数据库的构造器查询中的子查询、排序、分组等。 一.排序分组 1. 使用 whereColumn()方法实现两个字段相等的查询结果; //判断两个相等的字段,同样支持 orWhereColumn() //支持…...

【剑指 Offer】05,替换字符创中的空格;难度等级:简单。易错点:C++中 char 和 string 类型的转换

【剑指 Offer】05,替换字符创中的空格;难度等级:简单。 文章目录 一、题目二、题目背景三、我的解答四、易错点五、知识点:char 和 string 类型的转换 一、题目 二、题目背景 在网络编程中,如果 URL 参数中含有特殊字…...

图像分割入门教程

文章目录 图像分割入门教程1. 图像分割基本概念2. 基于阈值的图像分割3. 基于区域的图像分割4. 基于边缘的图像分割5. 基于区域和边缘的图像分割区别6. 基于深度学习的图像分割7. 实现步骤结论 图像分割入门教程 图像分割是计算机视觉领域的一个重要任务,其目标是将…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

线程同步:确保多线程程序的安全与高效!

全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...