亚马逊云科技工业数据湖解决方案,助力企业打通各业务场景数据壁垒
数字化浪潮蓬勃发展,制造行业数字化转型热度迭起,根据麦肯锡面向全球400多家制造型企业的调研表明,几乎所有细分行业都在大力推进数字化转型,高达94%的受访者都称,数字化转型是他们危机期间维持正常运营的关键。
数字化生产制造必将向数据驱动和智能分析转变,
基于融合数据的实时反馈和分析,将加快业务决策、提升生产力和质量管理
亚马逊云科技作为云计算领域的先行者,具有二十余年的制造业行业经验;结合制造业的业务场景及客户需求,面向真实业务场景设计开发相应解决方案,涵盖了产品和工艺设计、智能制造、供应链管理、智能产品与服务和可持续性,数智融合赋能制造业全价值链。对于智能制造领域,亚马逊云科技建议制造商融合IT+OT数据,在云中构建工业数据湖,以AI工业视觉/时间序列数据分析等创新应用进行价值挖掘和业务赋能。
● IT+OT数据融合
● 云中构建工业数据湖,承载业务需求
● 应用工业视觉等创新应用进行价值挖掘
亚马逊云科技工业数据湖解决方案
助力企业打通各业务场景数据壁垒
亚马逊云科技的工业数据湖(Industrial Data Lake)解决方案通过IT与OT数据融合,打造工业数据平台,可以实现从设备、流程、订单、交付等全过程可视化,进行数据的洞察和预警潜在的制造异常,实现基于AI和大数据的智能决策,提升智能运营敏捷性。
工业数据湖的部分典型场景举例
● 智慧工厂:建立安全的云连接,数据在云端近乎实时可见,在生产线或机器停机时,进行根本原因分析(RCA),或实时了解产线的堵塞情况,实现OEE的有效提升;
● 虚拟安灯:可帮助用户监控制造工作站的事件、记录该事件,然后将事件路由到适当的工程师处进行解决;
● 资产管理与运维:通过使用基于数据湖的看板和基于来提高机器可用性,企业可以跨交易系统实施自动化工作流程,调用维护工作订单和更换零件采购等操作;
● 质量看板:通过提供易于实施的传感器和集成分析应用程序,有助于延长资产的使用寿命、降低维护成本、促进资产的根本原因故障分析(RCFA)并改善平均故障间隔时间(MTBF)。
亚马逊云科技工业视觉解决方案
帮助制造商提升生产力、主动质量管理
工业视觉方案是由硬件+AI/ML+第三方服务组成的解决方案套件,旨在将制造企业现有的实物资产转化为智能资产。
工业视觉解决方案部分典型场景
● 厂区安全与健康监测:基于亚马逊云科技工业视觉的EHS解决方案则可以高效、低成本解决场所及人员监管,如危险区域监测;
● 工业仪表数据读取:借助亚马逊云科技工业视觉进行自动仪表数据识别,避免人工抄表完成,实时性差、数据记录不准确;
● 产品表面缺陷检测:亚马逊云科技工业视觉的解决方案可以进行质检,对包括物理性能、机械性能、外观等多重产品性质的全面监测,满足快速产线上高品质产品的要求;
● 配件错漏检测:采用亚马逊云科技工业视觉可以进行智能配件检查,快速识别配件的组合和遗漏等状况,保证产品完整性、降低客户投诉率;
● 服装行业断线识别:利用亚马逊云科技工业视觉,针对传统服装行业生产过程中容易出现断线、错线等状况,可在很短的周期内,在保证高准确性的前提下,快速进行线识别和模式匹配。
亚马逊云科技时序数据分析解决方案
赋能制造商训练和部署 AI/ML 应用
时序数据分析方案是由硬件+AI/ML+第三方服务解决方案的套件,旨在将制造企业现有的数据数字化,并快速地从中发现有用的信息。
时序数据分析解决方案部分典型场景
● 预测性维护:使用预测性维护策略来分析数据有助于避免计划外的故障,例如,在电力需求较低时,有计划地更换由远程状态监控系统识别出的某些风力涡轮机组件;
● 需求预测:通过预测未来某一时段内客户对于产品的需求,企业可以提前购买原材料、安排生产活动,以应对客户的需求变化;
● 设备效率优化:通过评估一条工艺线的可用性、性能和质量等获得设备综合效率(OEE),让制造商清晰地了解其生产过程,从而明确可以提升的地方,如提升生产灵活性、减少停机时间或提升产品质量等;
● 能耗管理和优化:制造型企业迫切需要一套绿色制造技术体系,打通数据采集、边缘计算、数据管理、分析建模、系统部署到工业应用,为能耗管理提供最优决策支撑。
亚马逊云科技智能制造解决方案
成功应用于全球制造业客户
亚马逊云科技携手普华永道,助力泉峰破解数据治理与使用难题;构建AI工业视觉检测平台,将误检率降到0.5%以内,并实现0漏检率,打造云端智慧监控系统,实现能源调度最优化。
相关文章:

亚马逊云科技工业数据湖解决方案,助力企业打通各业务场景数据壁垒
数字化浪潮蓬勃发展,制造行业数字化转型热度迭起,根据麦肯锡面向全球400多家制造型企业的调研表明,几乎所有细分行业都在大力推进数字化转型,高达94%的受访者都称,数字化转型是他们危机期间维持正常运营的关键。 数字…...
修改lib64/l.ibc.so6导致系统命令都不能用
问题:想升级libc-2.12.so到libc2.17,拷贝了一个libc2.17到lib64下,然后建立软连接到l.ibc.so6,导致系统除了cd之类的命令,其他都不能使用 报错:relocation error: /usr/lib64/libc.so.6: symbol _dl_start…...
Web(一)-- 创建一个简单的Web项目(idea 2022版)
目录 1. 在idea里面点击文件-新建-项目 2. 新建项目-更改名称为自己想要的项目名称-创建...
前一篇文章最后一个算法校正
前一篇文章最后一个算法的实现有一点问题,问题原因来自python中list删除数据会导致数据前移,针对这个特性目前没有一个很好的解决方案,所以在这里使用另外一个角度去实现,即将报到9的人编号置为0,在下次喊的时候&#…...

测试外包干了4年,我废了...
这是来自一位粉丝的投稿内容如下: 先说一下自己的个人情况,大专毕业,18年通过校招进入湖南某外包公司,干了接近4年的软件测试外包工作,马上2023年秋招了,感觉自己不能够在这样下去了,长时间呆在…...
CPU组成元素:运算器+控制器
目录标题 一、计算机硬件组成概述(Introduction to Computer Hardware Components)1.1 计算机系统的基本构架(Basic Architecture of Computer Systems)1.2 CPU的组成1.3运算器(Arithmetic Unit)、控制器&a…...
计算机网络——主机IP地址、子网掩码、广播地址、网络数、主机数计算方法
目录 一、概念 1.1 主机IP地址 1.2 子网掩码 1.3 广播地址 1.4 子网划分 二、计算 2.1 已知IP地址和子网掩码,计算网络地址和主机地址: 2.2 已知IP地址和子网掩码,计算广播地址: 2.3 已知子网掩码,计算主机数…...

Unity 后处理(Post-Processing) -- (1)概览
在Unity中,后处理(Post-Processing)是在相机所捕捉的图像上应用一些特殊效果的过程,后处理会让图像视觉效果更好(前提是做的好)。 这些效果的范围有非常细微的颜色调整,也包括整体的美术风格的大…...
Ajax + axios + 常用状态码(笔记)
Ajax 求关注😭 一、客户端与服务器相关的概念 1.1 客户端与服务器 1.1.1 服务器 服务器: 负责 存放 和 对外提供 资源 的 电脑本质: 就是一台电脑,只不过 性能 要比别的电脑 高 1.1.2 客户端 客户端: 在上网过程…...

python运算符
本章目的在于帮助大家了解 python中的常用的 算数运算符和赋值运算符 其实 算数运算符就是一些简单运算公式 我们可以编写代码如下 print("1 1 ",11) print("2 - 1 ",2 - 1) print("3 * 3 ",3 * 3) print("4 / 2 ",4 / 2) print(&…...
Python 列表(List)
Python中的列表(List)是一种有序的集合,可以包含任意数量的元素,元素可以是数字、字符串或其他对象,甚至包含其他列表。 以下是一些常见的列表操作: 1. 创建列表: 要创建一个列表,可以使用方括号 [] 将元…...

Java设计模式-装饰模式
简介 装饰模式在Java领域是一种常见的设计模式,它能够在不改变对象原有结构的情况下,动态地为对象添加新的功能。它通过封装原有对象,在运行时动态地为对象添加新的行为或者修改原有行为,以扩展对象的功能。这种方式避免了继承的…...
桐乡学历提升-学历到底有什么用呢?
造成“学历和能力,哪个更重要?”的问题,主要是现在有很多人,学历高,而其他方面的能力很差,甚至连基本的生活能力都没有,而更多的人则把有学历就看成有能力,对此现象弄不明白了&#…...

15天学习MySQL计划(运维篇)分库分表-监控-第十四天
15天学习MySQL计划分库分表-监控-第十四天 1.介绍 1.问题分析 随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增加,若采用但数据进行数据存储,存在以下性能瓶颈: IO瓶颈:热点数据太多,数…...

Melis4.0[D1s]:8.显示测试:图片格式和透明度
文章目录 1.准备素材图片1.1 测试图片像素格式的软件RawViewer.exe1.1.1 使用方法 1.2 自己生成测试图片 2.D1s显示引擎介绍(不保证正确)2.1 D1s 可以有2个独立的display device输出(可以同时接2个显示器)2.2 D1s 的 DISP0 有2个通…...
【论文阅读】Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
论文下载 GitHub bib: INPROCEEDINGS{,title {Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning},author {Eric Arazo and Diego Ortego and Paul Albert and Noel E OConnor and Kevin McGuinness},booktitle {IJCNN},year {2020},pages …...

三次输错密码后,系统是怎么做到不让我继续尝试的?
故事背景 忘记密码这件事,相信绝大多数人都遇到过,输一次错一次,错到几次以上,就不允许你继续尝试了。 但当你尝试重置密码,又发现新密码不能和原密码重复: 相信此刻心情只能用一张图形容: 虽…...

医学影像系统源码,三维后处理和重建 PACS源码
医学影像系统源码,三维后处理和重建 PACS源码 医学影像系统由PACS系统、RIS系统组成,提供与HIS的接口(HL7或其他类型)。 主要功能介绍 信息预约登记 支持对患者、检查项目、申请医生、申请单据、设备等信息进行管理。且支持检查…...
golang汇编之函数(四)
基本语法 函数标识符通过TEXT汇编指令定义,表示该行开始的指令定义在TEXT内存段。TEXT语句后的指令一般对应函数的实现,但是对于TEXT指令本身来说并不关心后面是否有指令。我个人觉得TEXT和LABEL定义的符号是类似的,区别只是LABEL是用于跳转…...

成都爱尔李晓峰主任:眼睛干到发出求救信号,快注意!
眼睛总感觉痒痒的,时不时干涩、酸胀、畏光? 它在提醒你,它太干了救救它! 干眼如何判断? 干眼症是由于泪液的质和量异常或者泪液的流体动力学障碍而导致眼表无法保持湿润的一种眼病。会发生眼睛干涩、酸胀、畏光、灼热感、异物感、看东西容易…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...

nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...