Kafka原理之消费者
一、消费模式
1、pull(拉)模式(kafka采用这种方式)
consumer采用从broker中主动拉取数据。
存在问题:如果kafka中没有数据,消费者可能会陷入循环中,一直返回空数据
2、push(推)模式
由broker决定消息发送频率,很难适应所有消费者的消费速率。
二、总体工作流程

案例一:单独消费者,并订阅主题
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;public class KafkaConsumerTest {public static void main(String[] args) {Properties properties  = new Properties();//集群地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");//反序列化方式properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);//消费者组,必须指定properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test_group");//创建消费者KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);//订阅主题List<String> topicList = new ArrayList<>();topicList.add("first");kafkaConsumer.subscribe(topicList);//消费数据while (true){try {ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> record : consumerRecords) {System.out.println(record.key() + "---------" + record.value());}}catch (Exception e){e.printStackTrace();}}}
}控制台输出
 
案例二:单独消费者,订阅主题+分区
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;public class KafkaConsumerTest {public static void main(String[] args) {Properties properties  = new Properties();//集群地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");//反序列化方式properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);//消费者组,必须指定properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test_group");//创建消费者KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);//订阅主题+分区List<TopicPartition> topicPartitionList = new ArrayList<>();topicPartitionList.add(new TopicPartition("first", 0));kafkaConsumer.assign(topicPartitionList);//消费数据while (true){try {ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> record : consumerRecords) {System.out.println(record.key() + "---------" + record.value());}}catch (Exception e){e.printStackTrace();}}}
}只消费了发往分区0的数据
 

案例三:消费者组
启动
多个消费案例一的消费者,会自动指定消费的分区(partition)
启动3个消费者,一个消费者消费一个分区

三、消费者组
由多个consumer组成(
条件:groupid相同),是逻辑上的一个订阅者。
- 每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费
- 消费者组之间互不影响
1、初始化流程
coordinator:辅助实现消费者组的初始化和分区的分配
coordinator节点选择=groupid的hashCode值%50(__consumer_offsets的分区数量)
例如:groupid的hashCode=1,1%50=1,那么__consumer_offsets主题的1号分区,在哪个broker上,就选择这个节点的coordinator作为这个消费者组的老大,消费者组下所有的消费者提交offset的时候,就往这个分区去提交offset
- 1.组内每个消费者向选中的coordinator节点发送joinGroup请求
- 2.coordinator节点选择一个consumer作为leader
- 3.coordinator节点把要消费的topic情况,发送给消费者leader
- 4.消费者leader负责制定消费方案
- 5.把消费方案发送给coordinator节点
- 6.coordinator节点把消费方案发送给各consumer
- 7.每个消费者都会和coordinator节点保持心跳(默认3s),一旦超时(session.timeout.ms=45s),该消费者会被移除,并触发再平衡;或者消费者处理的时间过长(max.poll.interval.ms=5分钟),也会被移除,并触发再平衡

2、分区分配以及再平衡
到底由哪个消费者来消费哪个partition的数据
- 分配策略:Range、RoundRobin、Sticky、CooperativeStick
- 配置参数:partition.assignment.strategy(默认:Range+CooperativeStick)
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Properties;public class KafkaConsumerTest {public static void main(String[] args) {Properties properties  = new Properties();//集群地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");//反序列化方式properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);//消费者组,必须指定properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test_group");//设置分区分配策略,多个策略使用逗号拼接properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, RoundRobinAssignor.class.getName());//创建消费者KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);//订阅主题List<String> topicList = new ArrayList<>();topicList.add("first");//再平衡的时候,会触发ConsumerRebalanceListenerkafkaConsumer.subscribe(topicList, new ConsumerRebalanceListener() {// 重新分配完分区之前调用@Overridepublic void onPartitionsRevoked(Collection<TopicPartition> partitions) {System.out.println("==============回收的分区=============");for (TopicPartition partition : partitions) {System.out.println("partition = " + partition);}}// 重新分配完分区后调用@Overridepublic void onPartitionsAssigned(Collection<TopicPartition> partitions) {System.out.println("==============重新得到的分区==========");for (TopicPartition partition : partitions) {System.out.println("partition = " + partition);}}});//消费数据while (true){try {ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> record : consumerRecords) {System.out.println(record);}}catch (Exception e){e.printStackTrace();}}}
}range
- 分配策略:对同一个topic里面的分区序号排序,对消费者按字母排序,通过- partition数量/consumer数量(如果除不尽,那么前面几个消费者将会多消费1个分区)
这个只是针对一个topic而言,C0消费者多消费一个分区影响不是很大,但是如果这个消费者组消费多个topic,容易产生数据倾斜
- 再平衡机制:某一个消费者挂掉后,45秒内产生的数据,将会由某一个消费者代为消费;45秒后产生的数据,会重新分配
RoundRobin
- 分配策略:对集群中所有的Topic而言,把所有的partition和所有的consumer都列出来,然后按照hashCode进行排序,最后通过轮询算法来分配partition给各个消费者
- 再平衡机制:轮询分配(不是按数据,是按分区)
Sticky
- 分配策略:分配带粘性,执行一次新的分配时,考虑原有的分配
- 再平衡机制:打散,尽量均匀分配(不是按数据,是按分区)
四、offset
1、默认维护位置
主题:__consumer_offset
key:group.id + topic + 分区号
value:当前offset的值
每隔一段时间,kafka内部会对这个topic进行压缩(compact),也就是每一个
group.id + topic + 分区号保留最新数据
2、自动提交offset
是否开启自动提交:
enable.auto.commit默认true
自动提交时间间隔:auto.commit.interval.ms默认5s
基于时间的提交,难以把握
3、手动提交offset
类别:同步提交(
commitSync)、异步提交(commitAsync)
相同点:提交一批数据的最高偏移量
不同点:同步阻塞当前现场,失败会自动重试;异步没有重试机制,可以提交失败。
4.指定offset消费
如果没有初始偏移量(消费者第一次消费)或者服务器上不存在当前偏移量(被删除),如何指定offset进行消费
auto.offset.reset=earliest(默认) | latest | none
在代码中设置方式为properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest")
- earliest:自动将偏移量重置为最早的偏移量(--from-beginning)
- latest:自动将偏移量重置为最新的偏移量
- none:没有偏移量,抛出异常
除了这三中,还可以自己来指定位置或者指定时间
 指定位置开始消费案例:
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.*;public class KafkaConsumerTest {public static void main(String[] args) {Properties properties  = new Properties();//集群地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");//反序列化方式properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);//消费者组,必须指定properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test_group");//创建消费者KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);//订阅主题List<String> topicList = new ArrayList<>();topicList.add("first");kafkaConsumer.subscribe(topicList);Set<TopicPartition> assignment = new HashSet<>();while (assignment.size() == 0){kafkaConsumer.poll(Duration.ofSeconds(1));//获取到消费者分区分配信息(有了分区分配信息才能开始消费)assignment = kafkaConsumer.assignment();}//遍历所有分区,并指定offset从100的位置开始消费for (TopicPartition partition : assignment) {kafkaConsumer.seek(partition, 100);}//消费数据while (true){try {ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> record : consumerRecords) {System.out.println(record);}}catch (Exception e){e.printStackTrace();}}}
}指定时间开始消费案例:把指定的时间转为offset
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.*;public class KafkaConsumerTest {public static void main(String[] args) {Properties properties  = new Properties();//集群地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");//反序列化方式properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);//消费者组,必须指定properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test_group");//创建消费者KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);//订阅主题List<String> topicList = new ArrayList<>();topicList.add("first");kafkaConsumer.subscribe(topicList);Set<TopicPartition> assignment = new HashSet<>();while (assignment.size() == 0){kafkaConsumer.poll(Duration.ofSeconds(1));//获取到消费者分区分配信息(有了分区分配信息才能开始消费)assignment = kafkaConsumer.assignment();}HashMap<TopicPartition, Long> timestampMap = new HashMap<>();for (TopicPartition partition : assignment) {//一天前的毫秒数timestampMap.put(partition, System.currentTimeMillis() - 1*24*3600*1000);}//获取毫秒数对应的offset位置Map<TopicPartition, OffsetAndTimestamp> offsetAndTimestampMap = kafkaConsumer.offsetsForTimes(timestampMap);OffsetAndTimestamp offsetAndTimestamp;//给每个patition设置offset位置for (TopicPartition partition : assignment) {offsetAndTimestamp = offsetAndTimestampMap.get(partition);kafkaConsumer.seek(partition, offsetAndTimestamp.offset());}//消费数据while (true){try {ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> record : consumerRecords) {System.out.println(record);}}catch (Exception e){e.printStackTrace();}}}
}五、消费者事务
使用消费者事务,进行精准一次消费,将消费过程和提交offset过程做原子操作绑定。解决重复消费和漏消费问题
- 重复消费:由自动提交offset引起。
- 漏消费:设置手动提交offset,提交offset时,数据还未落盘,消费者进程被kill,那么offset已经提交,但是数据未处理,导致这部分内存中数据丢失
六、数据挤压
- 消费能力不足:增加分区数量,同时提高消费者数量(注意:分区数量≥消费者数量)
- 处理不及时: 拉去数据 / 处理时间 < 生产速度 拉去数据/处理时间<生产速度 拉去数据/处理时间<生产速度,提高每批次拉去的数量。fetch.max.bytes(一次拉取得最大字节数,默认:5242880=50m)、max.poll.records(一次poll数据最大条数,默认:500条)
相关文章:
 
Kafka原理之消费者
一、消费模式 1、pull(拉)模式(kafka采用这种方式) consumer采用从broker中主动拉取数据。 存在问题:如果kafka中没有数据,消费者可能会陷入循环中,一直返回空数据 2、push(推)模式 由broker决定消息发送频率,很难适应所有消费者…...
 
PCIe的capability扩展空间字段解释
解释 这是一段关于高级错误报告的信息,其中包含多个字段和值。以下是每个字段的详细解释: Capabilities: [100 v1] Advanced Error Reporting 这是该设备支持高级错误报告的能力标识符。 UESta: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- R…...
 
力扣sql中等篇练习(二十)
力扣sql中等篇练习(二十) 1 寻找面试候选人 1.1 题目内容 1.1.1 基本题目信息1 1.1.2 基本题目信息2 1.1.3 示例输入输出 a 示例输入 b 示例输出 1.2 示例sql语句 # 分为以下两者情况,分别考虑,然后union进行处理(有可能同时满足,需要去进行去重) # ①该用户在 三场及更多…...
 
【神经网络】tensorflow -- 期中测试试题
题目一:(20分) 请使用Matplotlib中的折线图工具,绘制正弦和余弦函数图像,其中x的取值范围是,效果如图1所示。 要求: (1)正弦图像是蓝色曲线,余弦图像是红色曲线,线条宽度…...
 
计算机基础--计算机存储单位
一、介绍 计算机中表示文件大小、数据载体的存储容量或进程的数据消耗的信息单位。在计算机内部,信息都是釆用二进制的形式进行存储、运算、处理和传输的。信息存储单位有位、字节和字等几种。各种存储设备存储容量单位有KB、MB、GB和TB等几种。 二、基本存储单元…...
 
大数据Doris(十六):分桶Bucket和分区、分桶数量和数据量的建议
文章目录 分桶Bucket和分区、分桶数量和数据量的建议 一、分桶Bucket...
【webrtc】web端打开日志及调试
参考gist Chrome Browser debug logs sawbuck webrtc-org/native-code/logging 取日志 C:\Users\zhangbin\AppData\Local\Google\Chrome\User Data C:\Users\zhangbin\AppData\Local\Google\Chrome\User Data\chrome_debug.logexe /c/Program Files/Google/Chrome/Applicationz…...
C++ Primer第五版_第十六章习题答案(61~67)
文章目录 练习16.61练习16.62Sales_data.hex62.cpp 练习16.63练习16.64练习16.65练习16.66练习16.67 练习16.61 定义你自己版本的 make_shared。 template <typename T, typename ... Args> auto make_shared(Args&&... args) -> std::shared_ptr<T> {r…...
 
python定时任务2_celery flower计划任务
启动worker: celery -A tasks worker --loglevelerror --poolsolo worker启动成功 启动beat celery -A tasks beat --loglevelinfo beat启动成功 启动flower celery -A tasks flower --loglevelinfo flower启动成功,然后进入http://localhost:5555 可…...
 
地狱级的字节跳动面试,6年测开的我被按在地上摩擦.....
前几天我朋友跟我吐苦水,这波面试又把他打击到了,做了快6年软件测试员。。。为了进大厂,也花了很多时间和精力在面试准备上,也刷了很多题。但题刷多了之后有点怀疑人生,不知道刷的这些题在之后的工作中能不能用到&…...
 
怎么开发外贸网站
随着全球经济的发展,越来越多的企业选择走上国际化的道路,开展国际贸易业务。而外贸网站是一个相对常见的开展国际贸易业务的平台。那么,如何开发一款优秀的外贸网站呢? 首先,我们需要明确外贸网站的目标用户群体。由…...
 
从 Elasticsearch 到 Apache Doris,10 倍性价比的新一代日志存储分析平台|新版本揭秘
日志数据的处理与分析是最典型的大数据分析场景之一,过去业内以 Elasticsearch 和 Grafana Loki 为代表的两类架构难以同时兼顾高吞吐实时写入、低成本海量存储、实时文本检索的需求。Apache Doris 借鉴了信息检索的核心技术,在存储引擎上实现了面向 AP …...
H5 + C3基础(H5语义化标签 多媒体标签 新表单标签)
H5语义化标签 & 多媒体标签 & 新表单标签 H5语义化标签多媒体标签新表单标签新表单标签属性 H5语义化标签 以下常用标签均为块级元素 :带有语义的 div headernavsectionarticleasidefooter 多媒体标签 video mp4格式一般浏览器都支持,没办法…...
低代码平台选择指南:如何选出最适合你的平台?
低代码平台是一种新兴的软件开发工具,它们提供了一个简单易用的界面来设计、开发和部署应用程序,使用者无需编写复杂的代码。近年来,随着云计算和数字化转型的高速发展,越来越多的企业开始探索低代码平台以加快应用程序的开发速度…...
 
软考A计划-重点考点-专题十二(JAVA程序设计)
点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例 👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资源分享&am…...
 
亚马逊云科技工业数据湖解决方案,助力企业打通各业务场景数据壁垒
数字化浪潮蓬勃发展,制造行业数字化转型热度迭起,根据麦肯锡面向全球400多家制造型企业的调研表明,几乎所有细分行业都在大力推进数字化转型,高达94%的受访者都称,数字化转型是他们危机期间维持正常运营的关键。 数字…...
修改lib64/l.ibc.so6导致系统命令都不能用
问题:想升级libc-2.12.so到libc2.17,拷贝了一个libc2.17到lib64下,然后建立软连接到l.ibc.so6,导致系统除了cd之类的命令,其他都不能使用 报错:relocation error: /usr/lib64/libc.so.6: symbol _dl_start…...
Web(一)-- 创建一个简单的Web项目(idea 2022版)
目录 1. 在idea里面点击文件-新建-项目 2. 新建项目-更改名称为自己想要的项目名称-创建...
前一篇文章最后一个算法校正
前一篇文章最后一个算法的实现有一点问题,问题原因来自python中list删除数据会导致数据前移,针对这个特性目前没有一个很好的解决方案,所以在这里使用另外一个角度去实现,即将报到9的人编号置为0,在下次喊的时候&#…...
 
测试外包干了4年,我废了...
这是来自一位粉丝的投稿内容如下: 先说一下自己的个人情况,大专毕业,18年通过校招进入湖南某外包公司,干了接近4年的软件测试外包工作,马上2023年秋招了,感觉自己不能够在这样下去了,长时间呆在…...
 
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
 
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
 
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
 
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
 
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
