当前位置: 首页 > news >正文

【分布族谱】正态分布和二项分布的关系

文章目录

    • 正态分布
    • 二项分布
    • 验证

正态分布

正态分布,最早由棣莫弗在二项分布的渐近公式中得到,而真正奠定其地位的,应是高斯对测量误差的研究,故而又称Gauss分布。测量是人类定量认识自然界的基础,测量误差的普遍性,使得正态分布拥有广泛的应用场景,或许正因如此,正太分布在分布族谱图中居于核心的位置。

正态分布 N ( μ , σ ) N(\mu, \sigma) N(μ,σ)受到期望 μ \mu μ和方差 σ 2 \sigma^2 σ2的调控,其概率密度函数为

1 2 π σ 2 exp ⁡ [ − ( x − μ ) 2 2 σ 2 ] \frac{1}{\sqrt{2\pi\sigma^2}}\exp[-\frac{(x-\mu)^2}{2\sigma^2}] 2πσ2 1exp[2σ2(xμ)2]

μ = 0 \mu=0 μ=0 σ = 1 \sigma=1 σ=1时,为标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),对应概率分布函数为 Φ ( x ) = 1 2 π exp ⁡ [ − x 2 2 ] \Phi(x)=\frac{1}{\sqrt{2\pi}}\exp[-\frac{x^2}{2}] Φ(x)=2π 1exp[2x2],形状如下,

在这里插入图片描述

scipy.stats中,分别封装了正态分布类norm和标准正态分布类halfnorm

二项分布

二项分布是非常简单而又基础的一种离散分布,貌似是高中学到的第一个分布,就算不是第一个,也是第一批。在 N N N次独立重复的伯努利试验中,设A在每次实验中发生的概率均为 p p p。则 N N N次试验后A发生 k k k次的概率分布,就是二项分布,记作 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),则

P { X = k } = ( n k ) p k ( 1 − p ) n − k P\{X=k\}=\binom{n}{k}p^k(1-p)^{n-k} P{X=k}=(kn)pk(1p)nk

其中 ( n k ) = n ! k ! ( n − k ) ! \binom{n}{k}=\frac{n!}{k!(n-k)!} (kn)=k!(nk)!n!,高中的写法一般是 C n k C^k_n Cnk

q = 1 − p q=1-p q=1p,令 x k = k − n p n p q x_k=\frac{k-np}{\sqrt{npq}} xk=npq knp,当 n n n趋近于无穷大时,根据De Moivre–Laplace定理,有

lim ⁡ n → ∞ n ! k ! ( n − k ) ! p k q n − k ≈ 1 2 π n p q e ( k − n p ) 2 2 n p q \lim_{n\to\infty}\frac{n!}{k!(n-k)!}p^kq^{n-k}\approx\frac{1}{\sqrt{2\pi npq}}e^{\frac{(k-np)^2}{2npq}} nlimk!(nk)!n!pkqnk2πnpq 1e2npq(knp)2

即服从 σ 2 = n p q , μ = n p \sigma^2=npq, \mu=np σ2=npq,μ=np的高斯分布。

验证

下面通过scipy.stats对二项分布和高斯分布之间的关联进行验证

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as ssp,q = 0.2, 0.8
ns = [10, 100, 1000, 10000]fig = plt.figure()
for i,n in enumerate(ns):rs = ss.binom(n, p).rvs(50000)rv = ss.norm(n*p, np.sqrt(n*p*q))st, ed = rv.interval(0.999)xs = np.linspace(st, ed, 100)ys = rv.pdf(xs)ax = fig.add_subplot(2,2,i+1)ax.hist(rs, density=True, bins='auto', alpha=0.2)ax.plot(xs, ys)plt.title(f"n={n}")plt.show()

效果如下,可见随着 n n n越来越大,二项分布的随机数越来越靠近正态分布的概率密度曲线

在这里插入图片描述

相关文章:

【分布族谱】正态分布和二项分布的关系

文章目录 正态分布二项分布验证 正态分布 正态分布,最早由棣莫弗在二项分布的渐近公式中得到,而真正奠定其地位的,应是高斯对测量误差的研究,故而又称Gauss分布。测量是人类定量认识自然界的基础,测量误差的普遍性&am…...

7.设计模式之责任链模式

前言 责任链,即将能够处理同一类请求的对象连成一条链,所提交的请求沿着链传递, 链上的对象逐个判断是否有能力处理该请求,如果能则处理,如果不能则传递给链上的下一个对象。为了避免请求发送者与多个请求处理者耦合在…...

JAVA8的新特性——Stream

JAVA8的新特性——Stream 在这个深夜写下这篇笔记,窗外很安静,耳机里是《季节更替》,我感触还不是很多,当我选择封面图片的时候才发现我们已经渐渐远去,我们都已经奔赴生活,都在拼命想着去换一个活法&#…...

alias设置快捷键vim使用说明(解决服务器上输入长指令太麻烦的问题)

1. vi ~/.bashrc打开 2. (watch -n 1 gpustat 查看gpu使用情况 太麻烦)输入i进行编辑,最后一行输入 alias watchgpuwatch -n 1 gpustat alias gpuwatch -n 1 gpustat alias torch180source activate torch180 3. 按esc,然后输入:wq保存退出 4. source…...

英语基础句型之旅:从基础到高级

英语句型之旅:从基础到高级 一、起步:掌握英语基础句型 (Getting Started: Mastering Basic English Sentence Structures)1.1 英语句子的基本构成 (The Basic Components of English Sentences)1.2 五大基本句型解析 (Analysis of the Five Basic Sente…...

十四、Zuul网关

目录 一、API网关作用: 二、网关主要功能: 2.1、统一服务入口 2.2、接口鉴权 2.3、智能路由 2.4、API接口进行统一管理 2.5、限流保护 三、 新建一个项目作为网关服务器 3.1、项目中引入Zuul网关依赖 3.2、在项目application.yml中配置网关路由…...

5项目五:W1R3S-1(思路为主!)

特别注明:本文章只用于学习交流,不可用来从事违法犯罪活动,如使用者用来从事违法犯罪行为,一切与作者无关。 目录 前言 一、信息收集 二、网页信息的收集 三、提权 总结 前言 思路清晰: 1.信息收集,…...

Day958.代码的分层重构 -遗留系统现代化实战

代码的分层重构 Hi,我是阿昌,今天学习记录的是关于代码的分层重构的内容。 来看看如何重构整体的代码,也就是如何对代码分层。 一、遗留系统中常见的模式 一个学校图书馆的借书系统。当时的做法十分“朴素”,在点击“借阅”按钮…...

分子模拟力场

分子模拟力场 AMBER力场是在生物大分子的模拟计算领域有着广泛应用的一个分子力场。开发这个力场的是Peter Kollman课题组,最初AMBER力场是专门为了计算蛋白质和核酸体系而开发的,计算其力场参数的数据均来自实验值,后来随着AMBER力场的广泛…...

ERP 系统在集团化企业财务管理中的应用

(一)集团统一会计核算平台的构建原理及功能 第一,搭建集中统一会计核算平台的基础是确定财务组 织及岗位,在此基础上制定统一的会计核算政策、规范集中 基础数据、落实内控管理制度。 第二,具备了以上建立集中统一会计…...

达摩院开源多模态对话大模型mPLUG-Owl

miniGPT-4的热度至今未减,距离LLaVA的推出也不到半个月,而新的看图聊天模型已经问世了。今天要介绍的模型是一款类似于miniGPT-4和LLaVA的多模态对话生成模型,它的名字叫mPLUG-Owl。 论文链接:https://arxiv.org/abs/2304.14178…...

Group相关问题-组内节点限制移动范围

1.在节点中定义dragComputation,限制节点的移动范围 注意事项 组节点不定义go.Placeholder ,设置了占位符后组内节点移动将改变组节点位置dragComputation中自定义stayInGroup计算规则是根据groupNode的resizeObject计算 如果开启了resizable:true,建议指定其改变大的零部件r…...

程序员该如何学习技术

程序员该如何学习技术 前言 学习是第一生产力,我从来都是这么认为的,人只有只有不断地学习才能意识到自己的缺点和不足,身为程序员,我更认为人们应当抱着终身学习的想法实践下去,这是我所一直践行且相信的。 高处不胜寒…...

springboot+vue交流互动系统(源码+文档)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的交流互动系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 💕💕作者:风歌&a…...

【2023华为OD笔试必会25题--C语言版】《01 预定酒店》——排序、二分查找

本专栏收录了华为OD 2022 Q4和2023Q1笔试题目,100分类别中的出现频率最高(至少出现100次)的25道,每篇文章包括原始题目 和 我亲自编写并在Visual Studio中运行成功的C语言代码。 仅供参考、启发使用,切不可照搬、照抄,查重倒是可以过,但后面的技术面试还是会暴露的。✨✨…...

C语言实现队列--数据结构

😶‍🌫️Take your time ! 😶‍🌫️ 💥个人主页:🔥🔥🔥大魔王🔥🔥🔥 💥代码仓库:🔥🔥魔…...

前端CSS经典面试题总结

前端CSS经典面试题总结 2.1 介绍一 下 CSS 的盒子模型?2.2 css 选择器优先级?2.3 垂直居中几种方式?2.4 简明说一下 CSS link 与 import 的区别和用法?2.5 rgba和opacity的透明效果有什么不同?2.6 display:none和visib…...

cookie、session、token的区别是什么

前言 今天就来说说session、cookie、token这三者之间的关系!最近这仨玩意搞得头有点大🤣 1.为什么会有它们三个? 我们都知道 HTTP 协议是无状态的,所谓的无状态就是客户端每次想要与服务端通信,都必须重新与服务端链接…...

leetcode分类刷题 -- 前缀和和哈希

力扣 class Solution { public int subarraySum(int[] nums, int k) { Map<Integer,Integer> map new HashMap<>(); int count0,sum0; map.put(0,1); for(int i:nums){ sum i; if(map.containsKey(sum-k)) count map.get(sum-k); map.compute(sum,(key,v)->…...

浅谈作为程序员如何写好文档:了解读者

我作为从一名懵懂的实习生转变为工程师的工作经历中&#xff0c;伴随着技术经验的成长&#xff0c;也逐渐意识到了编写文档是知识和经验传递给其他人的最有效方式。通过文档&#xff0c;可以分享我的技术知识和最佳实践&#xff0c;使其他人更好地理解我的工作。在这里&#xf…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...