当前位置: 首页 > news >正文

[离散数学] 函数

文章目录

  • 函数
    • 判断函数的条件
    • 复合函数
      • 复合函数的性质
    • 逆函数

函数

在这里插入图片描述

判断函数的条件

dom F = A ⇔ \Leftrightarrow 所有x 都有 F(x)与之对应
有唯一的与其对应 < x , y > ∈ f ∧ < y , z > ∈ f ⇒ y = z <x,y>\in f \land <y,z>\in f \Rightarrow y =z <x,y>∈f<y,z>∈fy=z

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
|A| = m (基数) ,|B|=n (m,n 不全为0)
| B A B^A BA|= n m n^m nm

在这里插入图片描述
单射 ⇔ 入射 \Leftrightarrow 入射 入射 (一一对应)( f ( x 1 ) = f ( x 2 ) ⇒ x 1 = x 2 f(x1)=f(x2) \Rightarrow x1=x2 f(x1)=f(x2)x1=x2
值域全包含—>满射 y ∈ B ⇒ ∃ x ( x ∈ A ∧ y = f ( x ) ) y\in B\Rightarrow \exists x(x\in A \land y = f(x)) yBxxAy=f(x)

单射+满射=双射
在这里插入图片描述
在这里插入图片描述
不是函数

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

复合函数

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

复合函数的性质

在这里插入图片描述
在这里插入图片描述

逆函数

函数不一定存在逆函数
如果函数双射,则存在逆函数
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

相关文章:

[离散数学] 函数

文章目录 函数判断函数的条件复合函数复合函数的性质 逆函数 函数 判断函数的条件 dom F A ⇔ \Leftrightarrow ⇔所有x 都有 F&#xff08;x&#xff09;与之对应 有唯一的与其对应 < x , y > ∈ f ∧ < y , z > ∈ f ⇒ y z <x,y>\in f \land <y,z…...

好家伙,又一份牛逼笔记面世了...

最近网传的一些裁员的消息&#xff0c;搞的人心惶惶。已经拿到大厂offer的码友来问我&#xff1a;大厂还能去&#xff0c;去了会不会被裁。 还在学习的网友来问我&#xff1a;现在还要冲互联网么&#xff1f; 我是认为大家不用恐慌吧&#xff0c;该看啥看啥&#xff0c;该学啥…...

基于nodejs+vue3 的高仿网易云音乐

大家好&#xff0c;我是小寻&#xff0c;欢迎大家关注我的公众号&#xff1a;工具优选&#xff0c;加入前端、java群聊哦&#xff01; 今天给大家分享一个超高水准的项目&#xff1a;基于nodejsvue3研发的高仿网易云音乐&#xff0c;项目内容出自寻码网&#xff01; 技术栈&a…...

MySQL数据库用户管理以及数据库用户授权

一、数据库用户管理 1、新建用户 CREATE USER 用户名来源地址 [IDENTIFIED BY [PASSWORD] 密码]; ---------------------------------------------------------------------------------------------------------- 用户名&#xff1a;指定将创建的用户名 来源地址&#xff1a…...

全面分析生物技术的优缺点以及应用场景

一、 引言 生物识别技术具有不可撤销性、高度便利性和较低错误率等优势&#xff0c;在安全领域中也备受瞩目。然而&#xff0c;对于生物识别技术在应对安全挑战方面的可靠性和有效性&#xff0c;但争议并未被完全解决 二、生物识别技术的介绍 所谓生物识别技术就是&#xff0c;…...

OpenAI是什么?

OpenAI是一家人工智能技术公司&#xff0c;成立于2015年&#xff0c;总部位于美国旧金山。它的创始人包括埃隆马斯克等多名知名人士&#xff0c;公司的目标是推进人工智能技术的发展&#xff0c;同时确保人工智能的发展不会对人类造成负面影响。 OpenAI在研究和开发各种人工智能…...

量子计算——新兴领域的前沿技术

随着人类社会文明的不断进步&#xff0c;计算技术也在不断发展。传统计算机在过去的几十年中快速发展&#xff0c;计算速度、存储能力等方面发生了天翻地覆的变化。但随着大数据、人工智能、区块链等新兴领域的迅速崛起&#xff0c;传统计算机的发展似乎面临了瓶颈。在这样的背…...

.Net平台下OpenGL绘制图形(1)(VS2019,Winform,C#)

1、介绍 OpenGL&#xff08;英语&#xff1a;Open Graphics Library&#xff0c;译名&#xff1a;开放图形库或者“开放式图形库”&#xff09;是用于渲染2D、3D矢量图形的跨语言、跨平台的应用程序编程接口&#xff08;API&#xff09;。这个接口由近350个不同的函数调用组成…...

Casso的创作纪念日

机缘 注册CSDN的时候才刚上大学&#xff0c;到现在使用CSDN已经四年了&#xff0c;距发布第一篇文章却只刚过去一百多天&#xff0c;刚看到这个提醒消息的时候只感慨时间过得真快&#xff0c;自己也在慢慢成长着&#xff0c;当初刚开始学习的时候&#xff0c;查资料用得最多的就…...

Bernhard‘s Talk on Towards Causal NLP 笔记

因果学习系列笔记 这是我的 GitHub 因果学习笔记仓库 https://github.com/xin007-kong/ryCausalLearning&#xff0c;欢迎 star&#x1f929; 讲者是 Bernhard Schlkopf talk 链接&#xff1a;(41) Bernhard Schoelkopf | Towards Causal NLP | KeynoteEMNLP 2021 Causal Infer…...

ES6模块化规范

在没有ES6模块化规范前&#xff0c;有像AMD、CMD这样的浏览器模块化规范&#xff0c;还有像CommonJS这样的服务端模块化规范。 2015年&#xff0c;JS终于推出了官方的模块化规范&#xff0c;为了统一各种规范&#xff0c;我们简称ES6 模块化。 ES6目前作为JS的内置模块化系统&a…...

红黑树下岗,内核新数据结构上场:maple tree!

在外界看来&#xff0c;Linux 内核的内部似乎变化很少&#xff0c;尤其是像内存管理子系统&#xff08;memory-management subsystem&#xff09;这样的子系统。然而&#xff0c;开发人员时常需要更换内部接口来解决某些长期存在的问题。比如&#xff0c;其中一个问题就是用来保…...

Angular开发之——Angular打包部署项目(04)

一 概述 ng build 构建应用lite-server介绍及安装lite-server部署应用IIS管理器部署应用 二 ng build 构建应用 2.1 执行如下指令构建应用 ng build2.2 构建完成后&#xff0c;会创建一个 dist 文件夹 2.3 直接打开index.html会出错(需要借助于服务器部署) 三 lite-server介…...

深度优先搜索算法思想,题型总结与题目清单(不断更新)

深度优先搜索 深度优先搜索&#xff08;Depth-First Search&#xff0c;简称DFS&#xff09;是一种用于遍历或搜索树或图的算法。这个名称直接来自于这个算法的操作方式&#xff1a;它沿着某一路径深入遍历直到无法继续&#xff0c;然后再回溯进行下一条路径的遍历。 DFS的主要…...

网页三剑客之 CSS

css 在这里不会介绍太多&#xff0c;我们主要重点介绍两个&#xff1a;选择器和盒子模型就够用了。这里看个乐就好了&#xff0c;没有那么多重点&#xff0c;只是简单的认识一下下CSS。 CSS 是什么 CSS 是层叠样式表 (Cascading Style Sheets)的缩写它存在的意义就是&#xf…...

Maven(1)--- Maven入门指南

当然&#xff0c;我可以为你提供Maven的详细介绍&#xff0c;并按照6篇文章的方式进行详细展开。下面是第一篇的内容&#xff0c;采用Markdown格式输出&#xff1a; Maven入门指南 什么是Maven&#xff1f; Maven是一个强大的项目管理工具&#xff0c;被广泛应用于Java项目开…...

C# 实现 Websocket通讯聊天 (管用、超好使,点个赞)

1、背景 WebSocket出现之前&#xff0c;Web端为了实现即时通讯&#xff0c;所用的技术都是Ajax轮询(polling)。轮询是在特定的的时间间隔&#xff08;如每1秒&#xff09;&#xff0c;由浏览器对服务器发出HTTP request&#xff0c;然后由服务器返回最新的数据给客服端的浏览器…...

知识点回顾(一)

1.final,finally ,finalize final?修饰符&#xff08;关键字&#xff09;如果一个类被声明为final&#xff0c;意味着它不能再派生出新的子类&#xff0c;不能作为父类被继承。因此一个类不能既被声明为 abstract的&#xff0c;又被声明为final的。将变量或方法声明为final&…...

verflow属性的常用值详解

什么是overflow 在CSS中&#xff0c;overflow是“溢出”的意思&#xff0c;该属性规定当内容溢出元素框时发生的事情&#xff0c;设置内容是否会被修剪&#xff0c;溢出部分是否会被隐藏&#xff1b;例如当属性值设置为“visible”则内容不会被修剪&#xff0c;为“hidden”则内…...

算法怎么算:贪心算法

总有人在小白面前说&#xff1a;我是搞算法的&#xff0c;不是码农。又或者在想要进阶的时候&#xff0c;有人问你&#xff1a;你懂算法吗&#xff1f; 所有&#xff0c;算法到底是什么&#xff1f; 从目的性来说&#xff1a;它是计算方法&#xff0c;用来达到自己目的的方式…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...