当前位置: 首页 > news >正文

实验10 人工神经网络(1)

1. 实验目的

①理解并掌握误差反向传播算法;
②能够使用单层和多层神经网络,完成多分类任务;
③了解常用的激活函数。

2. 实验内容

①设计单层和多层神经网络结构,并使用TensorFlow建立模型,完成多分类任务;
②调试程序,通过调整超参数和训练模型参数,使模型在测试集上达到最优性能;
③测试模型,使用MatPlotlib对结果进行可视化呈现。

3. 实验过程

题目一:

  分别使用单层神经网络和多层神经网络,对Iris数据集中的三种鸢尾花分类,并测试模型性能,以恰当的形式展现训练过程和结果。
  要求:
  ⑴编写代码实现上述功能;
  ⑵记录实验过程和结果:
改变隐含层层数、隐含层中节点数等超参数,综合考虑准确率、交叉熵损失、和训练时间等,使模型在测试集达到最优的性能,并以恰当的方式记录和展示实验结果;
  ⑶分析和总结:
这个模型中的超参数有哪些?简要说明你寻找最佳超参数的过程,请分析它们对结果准确性和训练时间的影响,以表格或其他合适的图表形式展示。通过以上结果,可以得到什么结论,或对你有什么启发。
  ① 代码
单层神经网络:

import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = "SimHei"#设置gpu
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0],True)
for gpu in gpus:tf.config.experimental.set_memory_growth(gpu,True)#下载数据集
TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1],TRAIN_URL)TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"
test_path = tf.keras.utils.get_file(TEST_URL.split("/")[-1],TEST_URL)df_iris_train = pd.read_csv(train_path,header=0)
df_iris_test = pd.read_csv(test_path,header=0)iris_train = np.array(df_iris_train) #(120,5)
iris_test = np.array(df_iris_test) #(30,5)#拆
x_train = iris_train[:,0:4]#(120,4)
y_train = iris_train[:,4]#(120,)
x_test = iris_test[:,0:4]
y_test = iris_test[:,4]#中心化
x_train = x_train - np.mean(x_train,axis=0)#(dtype(float64))
x_test = x_test - np.mean(x_test,axis=0)
#独热编码
X_train = tf.cast(x_train,tf.float32)
Y_train = tf.one_hot(tf.constant(y_train,dtype=tf.int32),3)
X_test = tf.cast(x_test,tf.float32)
Y_test = tf.one_hot(tf.constant(y_test,dtype=tf.int32),3)#超参数
learn_rate = 0.5
iter = 100
display_step = 5
#初始化
np.random.seed(612)
W = tf.Variable(np.random.randn(4,3),dtype=tf.float32)  #权值矩阵
B = tf.Variable(np.zeros([3]),dtype=tf.float32) #偏置值
acc_train = []
acc_test = []
cce_train = []
cce_test = []for i in range(iter + 1):with tf.GradientTape() as tape:PRED_train = tf.nn.softmax(tf.matmul(X_train,W) + B)Loss_train = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_train,y_pred=PRED_train))PRED_test = tf.nn.softmax(tf.matmul(X_test,W) + B)Loss_test = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_test,y_pred=PRED_test))accuracy_train = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_train.numpy(),axis=1),y_train),tf.float32))accuracy_test = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_test.numpy(),axis=1),y_test),tf.float32))acc_train.append(accuracy_train)acc_test.append(accuracy_test)cce_train.append(Loss_train)cce_test.append(Loss_test)grads = tape.gradient(Loss_train,[W,B])W.assign_sub(learn_rate*grads[0])#dL_dW (4,3)B.assign_sub(learn_rate*grads[1])#dL_dW (3,)if i % display_step == 0:print("i:%d,TrainAcc:%f,TrainLoss:%f,TestAcc:%f,TestLoss:%f" % (i, accuracy_train, Loss_train, accuracy_test, Loss_test))#绘制图像
plt.figure(figsize=(10,3))
plt.suptitle("训练集和测试集的损失曲线和迭代率曲线",fontsize = 20)
plt.subplot(121)
plt.plot(cce_train,color="b",label="train")
plt.plot(cce_test,color="r",label="test")
plt.xlabel("Iteration")
plt.ylabel("Loss")
#plt.title("训练集和测试集的损失曲线",fontsize = 18)
plt.legend()plt.subplot(122)
plt.plot(acc_train,color="b",label="train")
plt.plot(acc_test,color="r",label="test")
plt.xlabel("Iteration")
plt.ylabel("Accuracy")
#plt.title("训练集和测试集的迭代率曲线",fontsize = 18)
plt.legend()plt.show()

多层神经网络

import pandas as pd
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = "SimHei"#下载数据集
TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1],TRAIN_URL)TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"
test_path = tf.keras.utils.get_file(TEST_URL.split("/")[-1],TEST_URL)
#表示第一行数据作为列标题
df_iris_train = pd.read_csv(train_path,header=0)
df_iris_test = pd.read_csv(test_path,header=0)iris_train = np.array(df_iris_train)#将二维数据表转换为numpy数组,(120,5),训练集有120条样本
iris_test = np.array(df_iris_test)
train_x = iris_train[:,0:4]
train_y = iris_train[:,4]
test_x = iris_test[:,0:4]
test_y = iris_test[:,4]train_x = train_x - np.mean(train_x,axis=0)
test_x = test_x - np.mean(test_x,axis=0)X_train = tf.cast(train_x,tf.float32)
Y_train = tf.one_hot(tf.constant(train_y,dtype=tf.int32),3) #将标签值转换为独热编码的形式(120,3)X_test = tf.cast(test_x,tf.float32)
Y_test = tf.one_hot(tf.constant(test_y,dtype=tf.int32),3)learn_rate = 0.55
iter = 70
display_step = 13np.random.seed(612)
#隐含层
W1 = tf.Variable(np.random.randn(4,16),dtype=tf.float32) #W1(4,16)
B1 = tf.Variable(tf.zeros(16),dtype=tf.float32)#输出层
W2 = tf.Variable(np.random.randn(16,3),dtype=tf.float32) #W2(16,3)
B2 = tf.Variable(np.zeros([3]),dtype=tf.float32)cross_train = []    #保存每一次迭代的交叉熵损失
acc_train = []      #存放训练集的分类准确率cross_test = []
acc_test = []for i in range(iter + 1):with tf.GradientTape() as tape:# 5.1定义网络结构# H= X * W1 + B1Hidden_train = tf.nn.relu(tf.matmul(X_train,W1) + B1)# Y = H * W2 + B2Pred_train = tf.nn.softmax(tf.matmul(Hidden_train,W2) + B2)#计算训练集的平均交叉熵损失函数0Loss_train = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_train,y_pred=Pred_train))#H = X * W1 + B1Hidden_test = tf.nn.relu(tf.matmul(X_test,W1) + B1)# Y = H * W2 + B2Pred_test = tf.nn.softmax(tf.matmul(Hidden_test,W2) + B2)#计算测试集的平均交叉熵损失函数Loss_test = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_test,y_pred=Pred_test))Accuarcy_train = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(Pred_train.numpy(),axis=1),train_y),tf.float32))Accuarcy_test = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(Pred_test.numpy(),axis=1),test_y),tf.float32))#记录每一次迭代的交叉熵损失和准确率cross_train.append(Loss_train)cross_test.append(Loss_test)acc_train.append(Accuarcy_train)acc_test.append(Accuarcy_test)#对交叉熵损失函数W和B求偏导grads = tape.gradient(Loss_train,[W1,B1,W2,B2])W1.assign_sub(learn_rate * grads[0])B1.assign_sub(learn_rate * grads[1])W2.assign_sub(learn_rate * grads[2])B2.assign_sub(learn_rate * grads[3])if i % display_step == 0:print("i:%d,TrainLoss:%f,TrainAcc:%f,TestLoss:%f,TestAcc:%f" % (i, Loss_train, Accuarcy_train, Loss_test, Accuarcy_test))plt.figure(figsize=(12,5))
plt.suptitle("训练集和测试集的损失曲线和迭代率曲线",fontsize = 20)
plt.subplot(121)
plt.plot(acc_train,color="b",label="train")
plt.plot(acc_test,color="r",label="test")
plt.xlabel("Iteration")
plt.ylabel("Loss")
#plt.title("训练集和测试集的损失曲线",fontsize = 18)
plt.legend()plt.subplot(122)
plt.plot(cross_train,color="b",label="train")
plt.plot(cross_test,color="r",label="test")
plt.xlabel("Iteration")
plt.ylabel("Accuracy")
#plt.title("训练集和测试集的迭代率曲线",fontsize = 18)
plt.legend()plt.show()

  ② 结果记录
单层神经网络:
在这里插入图片描述
在这里插入图片描述
多层神经网络
在这里插入图片描述
在这里插入图片描述

  ③ 实验总结

  参learn_rate = 0.5,iter = 100,display_step = 5其中神经网络的学习速度主要根据训练集上代价函数下降的快慢有关,而最后的分类的结果主要跟在验证集上的分类正确率有关。因此可以根据该参数主要影响代价函数还是影响分类正确率进行分类。超参数调节可以使用贝叶斯优化。

题目二:

  使用低阶API实现Softmax函数和交叉熵损失函数,并使用它们修改题目一,看下结果是否相同。
① 代码
不同之处
在这里插入图片描述

import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = "SimHei"#设置gpu
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0],True)
for gpu in gpus:tf.config.experimental.set_memory_growth(gpu,True)#下载数据集
TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1],TRAIN_URL)TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"
test_path = tf.keras.utils.get_file(TEST_URL.split("/")[-1],TEST_URL)df_iris_train = pd.read_csv(train_path,header=0)
df_iris_test = pd.read_csv(test_path,header=0)iris_train = np.array(df_iris_train) #(120,5)
iris_test = np.array(df_iris_test) #(30,5)#拆
x_train = iris_train[:,0:4]#(120,4)
y_train = iris_train[:,4]#(120,)
x_test = iris_test[:,0:4]
y_test = iris_test[:,4]#中心化
x_train = x_train - np.mean(x_train,axis=0)#(dtype(float64))
x_test = x_test - np.mean(x_test,axis=0)
#独热编码
X_train = tf.cast(x_train,tf.float32)
Y_train = tf.one_hot(tf.constant(y_train,dtype=tf.int32),3)
X_test = tf.cast(x_test,tf.float32)
Y_test = tf.one_hot(tf.constant(y_test,dtype=tf.int32),3)#超参数
learn_rate = 0.5
iter = 100
display_step = 5
#初始化
np.random.seed(612)
W = tf.Variable(np.random.randn(4,3),dtype=tf.float32)  #权值矩阵
B = tf.Variable(np.zeros([3]),dtype=tf.float32) #偏置值
acc_train = []
acc_test = []
cce_train = []
cce_test = []for i in range(iter + 1):with tf.GradientTape() as tape:#不同之处,换了低阶apiPRED_train = tf.exp(tf.matmul(X_train,W) + B)Loss_train = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_train,y_pred=PRED_train))PRED_test = tf.exp(tf.matmul(X_test,W) + B)Loss_test = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_test,y_pred=PRED_test))accuracy_train = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_train.numpy(),axis=1),y_train),tf.float32))accuracy_test = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_test.numpy(),axis=1),y_test),tf.float32))acc_train.append(accuracy_train)acc_test.append(accuracy_test)cce_train.append(Loss_train)cce_test.append(Loss_test)grads = tape.gradient(Loss_train,[W,B])W.assign_sub(learn_rate*grads[0])#dL_dW (4,3)B.assign_sub(learn_rate*grads[1])#dL_dW (3,)if i % display_step == 0:print("i:%d,TrainAcc:%f,TrainLoss:%f,TestAcc:%f,TestLoss:%f" % (i, accuracy_train, Loss_train, accuracy_test, Loss_test))#绘制图像
plt.figure(figsize=(10,3))
plt.suptitle("训练集和测试集的损失曲线和迭代率曲线",fontsize = 20)
plt.subplot(121)
plt.plot(cce_train,color="b",label="train")
plt.plot(cce_test,color="r",label="test")
plt.xlabel("Iteration")
plt.ylabel("Loss")
#plt.title("训练集和测试集的损失曲线",fontsize = 18)
plt.legend()plt.subplot(122)
plt.plot(acc_train,color="b",label="train")
plt.plot(acc_test,color="r",label="test")
plt.xlabel("Iteration")
plt.ylabel("Accuracy")
#plt.title("训练集和测试集的准确率曲线",fontsize = 18)
plt.legend()plt.show()

② 实验结果
在这里插入图片描述

在这里插入图片描述

4. 实验小结&讨论题

  ①在神经网络中,激活函数的作用是什么?常用的激活函数有哪些?在多分类问题中,在输出层一般使用使用什么激活函数?隐含层一般使用使用什么激活函数?为什么?
  答:激活函数的作用是去线性化;常用到激活函数:tanh,ReL,Sigmoid;Sigmoid函数用于输出层,tanh函数用于隐含层。
  ②什么是损失函数?在多分类问题中,一般使用什么损失函数?为什么?
  答:损失函数是用来评估模型的预测值与真实值不一致的程度
  (1)L1范数损失L1Loss
  (2)均方误差损失MSELoss
  (3)交叉熵损失CrossEntropyLoss
  ③神经网络的深度和宽度对网络性能有什么影响?
  答:如果一个深层结构能够刚刚好解决问题,那么就不可能用一个更浅的同样紧凑的结构来解决,因此要解决复杂的问题,要么增加深度,要么增加宽度。但是神经网络一般来说不是越深越好,也不是越宽越好,并且由于计算量的限制或对于速度的需求,如何用更少的参数获得更好的准确率无疑是一个永恒的追求。
  ④训练数据和测试数据对神经网络的性能有何影响?在选择、使用和划分数据集时,应注意什么?
  答:注意使用的范围和整体效果。

相关文章:

实验10 人工神经网络(1)

1. 实验目的 ①理解并掌握误差反向传播算法; ②能够使用单层和多层神经网络,完成多分类任务; ③了解常用的激活函数。 2. 实验内容 ①设计单层和多层神经网络结构,并使用TensorFlow建立模型,完成多分类任务&#xf…...

OPPO关停哲库业务,工程师造芯何去何从?

5月12日(上周五),新浪科技从OPPO处了解到,OPPO将终止ZEKU业务。3000多人团队突然原地解散,网上唏嘘声一片! ZEKU最初成立于2019年,是OPPO的全资子公司,欧加集团百分之百注资成立。总…...

面试被问麻了....

前几天组了一个软件测试面试的群,没想到效果直接拉满,看来大家对面试这块的需求还是挺迫切的。昨天我就看到群友们发的一些面经,感觉非常有参考价值,于是我就问他还有没有。 结果他给我整理了一份非常硬核的面筋,打开…...

AspNetCore中的配置文件详解

1 配置文件 程序开发中,有些信息是要根据环境改变的,比如开发环境的数据库可能是本地数据,而生产环境下需要连接生产数据库,我们需要把这些信息放到程序外面,在程序运行时通过读取这些外部信息实现不改变程序代码适应…...

实时更新天气微信小程序开发

1.新建一个天气weather项目 2.在app.json中创建一个路由页面 当我们点击保存的时候,微信小程序会自动的帮我们创建好页面 3.在weather页面上书写我们的骨架 4.此时我们的页面很怪,因为没有给它添加样式和值。此时我们给它一个样式。(样式写在…...

css渐变

线性渐变 liner-gradient属性值用来设置线性渐变,第一个参数值是方向,默认是从上往下,往后就是渐变颜色的种类。 background-image:liner-gradient(方向,颜色1,颜色2...) .box {display: flex;width: 400px;height: …...

《斯坦福数据挖掘教程·第三版》读书笔记(英文版) Chapter 2 MapReduce and the New Software Stack

来源:《斯坦福数据挖掘教程第三版》对应的公开英文书和PPT Chapter 2 MapReduce and the New Software Stack Computing cluster means large collections of commodity hardware, including conventional processors (“compute nodes”) connected by Ethernet …...

HTML零基础快速入门(详细教程)

1&#xff0c;HTML代码特点 <html><head></head><body>hello world!</body> </html>HTML代码有以下特点&#xff1a; html代码是通过标签来组织的&#xff0c;而标签是由尖括号< >组织的&#xff0c;也可被叫作元素&#xff08;ele…...

Kubernetes第5天

第七章 Service详解 本章节主要介绍kubernetes的流量负载组件&#xff1a;Service和Ingress。 Service介绍 ​ 在kubernetes中&#xff0c;pod是应用程序的载体&#xff0c;我们可以通过pod的ip来访问应用程序&#xff0c;但是pod的ip地址不是固定的&#xff0c;这也就意味着…...

RK3568平台开发系列讲解(调试篇)debugfs 分析手段

🚀返回专栏总目录 文章目录 一、enable debugfs二、debugfs API三、使用示例沉淀、分享、成长,让自己和他人都能有所收获!😄 📢Linux 上有一些典型的问题分析手段,从这些基本的分析方法入手,你可以一步步判断出问题根因。这些分析手段,可以简单地归纳为下图: 从这…...

【Spring框架全系列】SpringBoot配置日志文件

&#x1f367;&#x1f367;哈喽&#xff0c;大家好&#xff0c;我是小浪。那么上篇博客我们学习了SpringBoot配置文件的相关操作&#xff0c;本篇博客我们将学习一个新的知识点&#xff0c;SpringBoot日志文件。&#x1f5a5;&#x1f5a5; &#x1f4f2;目录 一、日志是什么…...

事务 ---MySQL的总结(六)

事务 多进程进行并改变同一个数据&#xff0c;如果没有进行版本控制&#xff0c;就会出现数据不确定的问题&#xff0c;为此引入了事务的概念。可以进行数据回滚&#xff0c;解决潜在的问题。 事务的概念 一组的DML组成&#xff0c;这一些的DML要么同时成功&#xff0c;要么同…...

22 标准模板库STL之容器适配器

概述 提到适配器,我们的第一印象是想到设计模式中的适配器模式:将一个类的接口转化为另一个类的接口,使原本不兼容而不能合作的两个类,可以一起工作。STL中的容器适配器与此类似,是一个封装了序列容器的类模板,它在一般序列容器的基础上提供了一些不同的功能和接口。之所…...

目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究

目录 基于深度学习的自动驾驶目标检测算法研究 相关理论基础 2.1 卷积神经网络基本原理...

服务网关Gateway

前言 API 网关出现的原因是微服务架构的出现&#xff0c;不同的微服务一般会有不同的网络地址&#xff0c;而外部客户端可能需要调用多个服务的接口才能完成一个业务需求&#xff0c;如果让客户端直接与各个微服务通信&#xff0c;会有以下的问题&#xff1a; 破坏了服务无状态…...

(4)定时器

51单片机的定时器属于单片机的内部资源&#xff0c;其电路的连接和运转均在单片机内部完成 作用&#xff1a; 用于计时系统替代长时间Delay&#xff0c;提高运行效率和速度任务切换 STC89C52定时器资源&#xff1a; 定时器个数&#xff1a;3个&#xff08;T0,T1,T2&#xf…...

项目实现读写分离操作(mysql)

读写分离 1.问题说明 2.读写分离 Master&#xff08;主库&#xff09;----(数据同步)—> Slave&#xff08;从库&#xff09; Mysql主从复制 mysql主从复制 介绍 mysql主从复制是一个异步的复制过程&#xff0c;底层是基于mysql数据库自带的二进制日志功能。就是一台或多台…...

VP记录:Educational Codeforces Round 148 (Rated for Div. 2) A~D1

传送门:CF 前题提要:本人临近期中,时间较紧,且关于D2暂时没有想到优化算法,因此准备留着以后有时间再继续解决 A题:A. New Palindrome 简单的模拟题,考虑记录每一个字母出现的次数.很容易发现奇数次的数字只能出现一次.因为最多只能在正中间放一个.并且因为不能和初始字符相…...

无线模块|如何选择天线和设计天线电路

无线模块的通信距离是一项重要指标&#xff0c;如何把有效通信距离最大化一直是大家疑惑的问题。本文根据调试经验及对天线的选择与使用方法做了一些说明&#xff0c;希望对工程师快速调试通信距离有所帮助。 一、天线的种类 随着技术的进步&#xff0c;为了节省研发周期&…...

(11)LCD1602液晶显示屏

LCD1602&#xff08;Liquid Crystal Display&#xff09;液晶显示屏是一种字符型液晶显示模块&#xff0c;可以显示ASCII码的标准字符和其它的一些内置特殊字符&#xff0c;还可以有8个自定义字符&#xff0c;自带芯片扫描 显示容量&#xff1a;162个字符&#xff0c;每个字符…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

6.9-QT模拟计算器

源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...