毫米波雷达系列 | 传统CFAR检测(自适应类)
毫米波雷达系列 | 传统CFAR检测(自适应类)
VI-CFAR
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dV34CKJt-1684215839850)(毫米波雷达系列 传统CFAR检测(自适应类).assets/image-20230516131206695.png)\
均值类和有序统计类CFAR检测器在不同背景环境下,其性能各有优缺点,在实际场景下难以确定杂波边缘所在位置并且目标的分布都是随机的,大部分的CFAR检测器在非均匀环境下都会产生检测损失,针对这种问题学者们提出了一种自适应于杂波的CFAR检测器,针对不同背景环境选择不同的CFAR检测器,自适应类CFAR检测器结合了均值类和有序统计类的优点。
VI-CFAR算法是利用参考单元的变化指数VIA和VIB以及前后参考单元的均值比MR来设计的一套判决准则,判断当前目标所处的背景环境,然后根据不同的背景环境选择合适的策略。
V I = 1 + σ 2 μ 2 = 1 + 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) 2 ( x ‾ ) 2 VI=1+\frac{\sigma_2}{\mu_2}=1+\frac{1}{n-1}\sum_{i=1}^{n}\frac{(x_i-\overline{x}) ^2}{(\overline{x})^2} VI=1+μ2σ2=1+n−11i=1∑n(x)2(xi−x)2
M R = x A ‾ x B ‾ = ∑ i = 1 x i ∑ j = 1 x j MR=\frac{\overline{x_A}}{\overline{x_B}}=\frac{\displaystyle\sum_{i=1}{x_i}}{\displaystyle\sum_{j=1}{x_j}} MR=xBxA=j=1∑xji=1∑xi
其中 x A ‾ \overline{x_A} xA和 x B ‾ \overline{x_B} xB分别为前后参考滑窗均值。
VI-CFAR的判决表如下:
| 前沿滑窗是否均匀 | 前后滑窗均值是否相同 | VI-CFAR阈值 | 后沿滑窗是否均匀 | 选用的方法 |
|---|---|---|---|---|
| 是 | 是 | T N × ∑ A B T_N\times\sum{AB} TN×∑AB | 是 | CA-CFAR |
| 是 | 否 | T N / 2 × max ( ∑ A , ∑ B ) T_{N/2}\times\max{(\sum{A},\sum{B})} TN/2×max(∑A,∑B) | 是 | GO-CFAR |
| 否 | - | T N / 2 × ∑ B T_{N/2}\times\sum{B} TN/2×∑B | 是 | CA-CFAR |
| 是 | - | T N / 2 × ∑ A T_{N/2}\times\sum{A} TN/2×∑A | 否 | CA-CFAR |
| 否 | - | T N / 2 × min ( ∑ A , ∑ B ) T_{N/2}\times\min{(\sum{A},\sum{B})} TN/2×min(∑A,∑B) | 否 | SO-CFAR |
从表中可以看出,均匀环境前后参考滑窗均匀且前后参考滑窗均值相同,认为前后参考滑窗是一致的选择CA-CFAR检测器;对于杂波边缘环境,当某一侧参考滑窗的参考单元分别属于两种不同功率的杂波区时,一侧参考滑窗均匀而另一侧非均匀,直接取均匀一侧作为背景杂波功率估计值,选择N/2长度的CA-CFAR检测器;如果两侧滑窗均匀,但均值不处于统一功率水平,选择GO-CFAR检测器,以保证杂波边缘的虚警概率;当两侧参考滑窗均是非均匀,说明两侧参考滑窗可能都含有干扰目标或者存在杂波边缘的情况,选择SO-CFAR检测器取均值较小的一侧作为背景杂波功率估计值。
仿真对比
在均匀杂波环境、多目标环境和杂波边缘环境中对均值类CFAR检测器的性能进行比较分析。
参数设置:
| 虚警概率 | 10-4 |
|---|---|
| 参考单元 | 32 |
| 保护单元 | 4 |
| 信噪比SNR | 20 |
| 多目标单元位置 | 110和120 |
| 比例系数 | 3/4 |
| r1、r2 | 2、4 |
| VI和MR | 4.76、1.086 |
| 杂波边缘功率 | 20dB、30dB |
(1)均匀环境
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7DMOLmer-1684215839851)(毫米波雷达系列 传统CFAR检测(自适应类).assets/VI在均匀环境单目标检测.png)]](https://img-blog.csdnimg.cn/bf08529b045f47f4895414bffbdcbb2a.png)
(2)多目标环境
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-v8Pi94bn-1684215839852)(毫米波雷达系列 传统CFAR检测(自适应类).assets/VI均匀环境下多目标检测.png)]](https://img-blog.csdnimg.cn/14e097593855486d9d1ce6be570695fa.png)
(3)杂波环境
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4kuxSrhH-1684215839852)(毫米波雷达系列 传统CFAR检测(自适应类).assets/VI边缘杂波不存在目标情况.png)]](https://img-blog.csdnimg.cn/5a8b1bb3ccd14c27b0cc2d0f736e14c5.png)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bWhVCF2q-1684215839852)(毫米波雷达系列 传统CFAR检测(自适应类).assets/VI边缘杂波存在目标情况.png)]](https://img-blog.csdnimg.cn/29fba85cc3cd4739ac00db336b530ec1.png)
从结果中可以看出,在均匀环境中VI-CFAR检测器可以检测出目标,且检测门限不会像均值类CFAR检测器出现明显的跳变,其检测门限值与有序统计类接近。说明VI-CFAR检测器能够很好的在均匀环境下辨别出目标;在多目标环境中,设置三个临近的目标均被VI-CFAR检测器检测到,说明VI-CFAR在多目标环境中的能力与有序统计类CFAR检测器接近;VI-CFAR检测器在边缘杂波环境中可以成功检测出目标,因为在边缘杂波环境且前后参考滑窗均匀时,VI-CFAR检测器使用的GO-CFAR,GO-CFAR在杂波边缘环境下具有良好的虚警控制能力。
代码:
function [results] = cfar_vi(x,NSlide,NProt,KVI,KMR,PAD)
%FUNC_CFAR_VI 此处显示有关此函数的摘要
% x 原始杂波数据
% alpha 标称因子
% NSli 参考滑窗大小
% NPro 保护单元大小
% KVI 半滑窗是否均匀,判决门限
% KMR 前后滑窗均值是否相同,判决门限
alpha=zeros(1,2);
alpha(1,1)=PAD.^(-1./NSlide)-1;
alpha(1,2)=PAD.^(-2./NSlide)-1;
persistent left; %类似于Java中静态变量
persistent right;
persistent HalfSlide;
persistent HalfProt;
persistent len;
if isempty(left)left=1+HalfProt+HalfSlide; % 左边界right=length(x)-HalfProt-HalfSlide; % 右边界HalfSlide=NSlide/2;HalfProt=NProt/2;len=length(x);
end
T=zeros(1,len); %检测阈值
trgt = java.util.LinkedList; %目标点坐标,横轴loc
flag_out=ones(0,len);for i=1:left-1 %左边界cell_right=x(1,i+HalfProt+1:i+HalfSlide+HalfProt);T(1,i)=sum(cell_right)*alpha(1,2);if T(1,i)<x(i)trgt.add(i);end
endfor i=left:right %中间区域cell_left=x(1,i-HalfSlide-HalfProt:i-HalfProt-1);cell_right=x(1,i+HalfProt+1:i+HalfSlide+HalfProt);sumA=sum(cell_left);sumB=sum(cell_right);VIA=1+var(cell_left)./(mean(cell_left)).^2;VIB=1+var(cell_right)./(mean(cell_right)).^2;MR=sumA/sumB;flag=false(1,3);flag(1,1)=VIA<=KVI;flag(1,2)=VIB<=KVI;if 1/KMR<=MR && MR<=KMRflag(1,3)=1;endif sum(flag)==3%环境类型1T(1,i)=(sumA+sumB).*alpha(1,1);flag_out(1,i)=1;elseif sum(flag(1,1:2))==2 && ~flag(1,3)%环境类型2T(1,i)=max(sumA,sumB).*alpha(1,2);flag_out(1,i)=2;elseif sum(flag(1,1:2))==1%环境类型3if flag(1,1)==1%环境类型3-1T(1,i)=sumA.*alpha(1,2);else%环境类型3-2T(1,i)=sumB.*alpha(1,2);endflag_out(1,i)=3;elseif sum(flag(1,1:2))==0%环境类型4T(1,i)=min(sumA,sumB).*alpha(1,2);flag_out(1,i)=4;endif T(1,i)<x(i)trgt.add(i);end
endfor i=right+1:len %右边界cell_left=x(1,i-HalfSlide-HalfProt:i);T(1,i)=sum(cell_left)*alpha(1,2);if T(1,i)<x(i)trgt.add(i);end
end
results=T;
end
l_left=x(1,i-HalfSlide-HalfProt:i);
T(1,i)=sum(cell_left)*alpha(1,2);
if T(1,i)<x(i)
trgt.add(i);
end
end
results=T;
end
相关文章:
毫米波雷达系列 | 传统CFAR检测(自适应类)
毫米波雷达系列 | 传统CFAR检测(自适应类) VI-CFAR [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dV34CKJt-1684215839850)(毫米波雷达系列 传统CFAR检测(自适应类).assets/image-20230516131206695…...
【2023/05/19】NFA
Hello!大家好,我是霜淮子,2023倒计时第14天。 非确定有限状态自动机(NFA)是一种模拟复杂系统行为的数学模型 目录 一、基本概念和理论 二、优点和缺点 三、应用场景 四、问题和挑战 五、重要性、作用和使用价值 …...
汽车功能安全
前言 近些年来,功能安全在汽车传统底盘域和动力域的应用已较为成熟,各大汽车企业功能安全意识也逐渐增强。在辅助驾驶和自动驾驶爆发式增长的大趋势下,现代汽车的功能安全在目前尤为复杂的电子电气系统中就显得更为重要,功能安全…...
【Python】数据分析与可视化实践:收支日统计数据可视化的实现
Python数据分析与可视化实践:收支日统计数据可视化的实现 Author:萌狼蓝天 Date:2023-5-7 数据读入与基本处理 上图是原始数据的一部分,存放于excel中,首先使用pd读入数据。读入数据后,删除不是收入&#x…...
Halcon 中_xld算子的概念与应用? select_shape_std 和 select_shape_xld区别?
文章目录 1 halcon中XLD的概念与应用1.1 halcon中什么是XLD?1. 2 XLD相关算子1.2 XLD的应用1.2.1 生成XLD的操作1.2.2 选取特定xld1.2.3 3.3 XLD的合并操作2 select_shape_std 和 select_shape_xld区别2.1 select_shape_std 算子介绍2.2 select_shape_xld算子介绍2.3 select_s…...
[pgrx开发postgresql数据库扩展]7.返回序列的函数编写(3)多行表序列
前文再续,书接上一回。 上一回我们解析了如何通过pgrx编写srf,返回一个TableIterator,但是在具体应用的时候,我们还是针对一条记录返回了一行数据(多个字段的一行,也还是一行),并没…...
刚入职,就想跑路了...
刚入职一家公司,想离职又怕找不到新工作。 说实话,这个问题还是蛮常见的,很多时候,入职的公司并不是自己最满意的,即使是最满意的,入职后总会遇到各种各样的不顺心,公司制度不规范啊࿰…...
如何让技术架构师具有预知未来业务发展的能力
大家好,今天我们来分享业务架构,但是我们并不是以产品经理角度讲述一个业务架构是什么以及如何做?而是以一个技术架构师的角度,讲述如何承接业务架构或在没有业务架构的时候,如何判断业务变化趋势而对系统架构提前做出…...
卷麻了,新来的00后实在是太卷了...
在程序员职场上,什么样的人最让人反感呢? 是技术不好的人吗?并不是。技术不好的同事,我们可以帮他。 是技术太强的人吗?也不是。技术很强的同事,可遇不可求,向他学习还来不及呢。 真正让人反感的,是技术平平&…...
单片机--实战练习
目录 【1】GPIO 1.定义 2.应用 I - Input - 输入采集 O - Output - 输出控制 编辑编辑 3.GPIO结构框图 4.功能描述 输入功能 输出功能 5.相关寄存器 【2】点亮一盏LED灯 1.实验步骤 2.编程实现 3.编译下载 4.复位上电 练习:实现LED灯闪烁…...
Go Etcd 分布式锁实战
1 分布式锁概述 谈到分布式锁,必然是因为单机锁无法满足要求,在现阶段微服务多实例部署的情况下,单机语言级别的锁,无法满足并发互斥资源的安全访问。常见的单机锁如Java的jvm锁Lock、synchronized,golang的Mutex等 对…...
Windows环境下pcl点云库 安装配置教程
本文为Windows配置点云库pcl步骤,具体win10、visual studio 2019、pcl1.11.1。 【1】下载安装包 Releases PointCloudLibrary/pcl GitHub 其中,AllInOne是一个包含了PCL库所有模块的单独下载包,方便快速获取整个PCL库,而pdb则…...
岗位分析与可视化系统(三)
五、可视化 5.1薪资页面 在views,编写薪资分析的代码 def salary(request): uname = request.session[username] userInfo = User.objects.get(username=uname) edus, workexps = getSalary.getPageDt() defaultedu = 不限 defaultworkexp = 不限 if request.G…...
unity进阶学习笔记:json和xml
1早期的数据格式 在早期程序开发中一个简单且常用的数据格式为CSV。该格式单纯依靠逗号来分割数据。目前windows的office依然支持CSV解析,我们可以试着新建一个txt文件,在里面加入逗号分隔的信息: a, 1, 15, 30, true 将txt文件后缀改为csv&…...
数据结构之初识树与堆
前言:前面学习了顺序表,队列,栈,链表,我们知道他们都是一种线性表,是一种线性结构,而除此之外,仍有许多我们还没认识的结构,比如树形结构,不同于线性结构&…...
虚拟化技术 — VirtIO 虚拟设备接口标准
目录 文章目录 目录VirtIOVirtIO 虚拟设备接口标准VirtIO 的前后端分层架构标准VirtIO 的数控路径分离架构标准VirtIO 的传输层标准VirtIO 标准在 Linux 中的实现VirtIO VirtIO 由 Rusty Russell 开发,最初是为了支持自己开发的 lguest Hypervisor,其设计目标是在虚拟化环境…...
Dubbo——SpringBoot集成Dubbo(@Autowired和@Reference的区别、Dubbo的服务治理)
Dubbo——原生API实现远程调用_Strine的博客-CSDN博客 在上一篇文章中我们讲了如何使用原生API发起远程调用,显然这种方式肯定是非常麻烦的,因此我们这里就讲如何使用SpringBoot去集成Dubbo将这些配置简化。 生产者服务 添加配置文件 dubbo:applicat…...
高并发系统的三把利器
目录 1.限流 2.缓存 2.1.缓存的使用场景 3.降级 3.1.什么是降级? 3.2.服务降级方式 4.其他高并发手段 4.1. 集群 4.2.拆分 4.2.1 应用拆分 4.2.2 数据库 4.3. 静态化 4.4.削峰 4.5.限流 5.总结 参考 保护高并发系统的三大利器:限流、熔…...
AppiumWinAppDriver自动化测试 Failed to locate opened application window with appid问题
问题产生原因:1.期望能力选项参数丢失 例如:capabilities.setCapability("appWorkingDir", "C:\\Program Files (x86)\\Tencent\\app")) 某些app需要设置目录属性才可以启动。 问题产生原因:2.访问权限不足 例如&…...
渗透测试--6.1.aircrack-ng破解wifi密码
目录 1.Aircrack-ng简介 1.1 airdump-ng 1.2 aireplay-ng 1.3 aircrack-ng 2.Deauth攻击 3.aircrack-ng工具破解无线网络密码 步骤一:虚拟机连接实验需要用到的网卡 步骤二:设置网卡为监听模式 步骤三:使用wlan0mon网卡扫描附近wif…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
