当前位置: 首页 > news >正文

Python: 结合多进程和 Asyncio 以提高性能

动动发财的小手,点个赞吧!

简介

多亏了 GIL,使用多个线程来执行 CPU 密集型任务从来都不是一种选择。随着多核 CPU 的普及,Python 提供了一种多处理解决方案来执行 CPU 密集型任务。但是直到现在,直接使用多进程相关的API还是存在一些问题。

本文[1]开始之前,我们还有一小段代码来帮助演示:

import time
from multiprocessing import Process


def sum_to_num(final_num: int) -> int:
    start = time.monotonic()

    result = 0
    for i in range(0, final_num+11):
        result += i

    print(f"The method with {final_num} completed in {time.monotonic() - start:.2f} second(s).")
    return result

该方法接受一个参数并从 0 开始累加到该参数。打印方法执行时间并返回结果。

多进程存在的问题

def main():
    # We initialize the two processes with two parameters, from largest to smallest
    process_a = Process(target=sum_to_num, args=(200_000_000,))
    process_b = Process(target=sum_to_num, args=(50_000_000,))

    # And then let them start executing
    process_a.start()
    process_b.start()

    # Note that the join method is blocking and gets results sequentially
    start_a = time.monotonic()
    process_a.join()
    print(f"Process_a completed in {time.monotonic() - start_a:.2f} seconds")

    # Because when we wait process_a for join. The process_b has joined already.
    # so the time counter is 0 seconds.
    start_b = time.monotonic()
    process_b.join()
    print(f"Process_b completed in {time.monotonic() - start_b:.2f} seconds")

如代码所示,我们直接创建并启动多个进程,调用每个进程的start和join方法。但是,这里存在一些问题:

  1. join 方法不能返回任务执行的结果。
  2. join 方法阻塞主进程并按顺序执行它。

即使后面的任务比前面的任务执行得更快,如下图所示:

alt
alt

使用池的问题

如果我们使用multiprocessing.Pool,也会存在一些问题:

def main():
    with Pool() as pool:
        result_a = pool.apply(sum_to_num, args=(200_000_000,))
        result_b = pool.apply(sum_to_num, args=(50_000_000,))

        print(f"sum_to_num with 200_000_000 got a result of {result_a}.")
        print(f"sum_to_num with 50_000_000 got a result of {result_b}.")

如代码所示,Pool 的 apply 方法是同步的,这意味着您必须等待之前的 apply 任务完成才能开始执行下一个 apply 任务。

alt

当然,我们可以使用 apply_async 方法异步创建任务。但是同样,您需要使用 get 方法来阻塞地获取结果。它让我们回到 join 方法的问题:

def main():
    with Pool() as pool:
        result_a = pool.apply_async(sum_to_num, args=(200_000_000,))
        result_b = pool.apply_async(sum_to_num, args=(50_000_000,))

        print(f"sum_to_num with 200_000_000 got a result of {result_a.get()}.")
        print(f"sum_to_num with 50_000_000 got a result of {result_b.get()}.")
alt

直接使用ProcessPoolExecutor的问题

那么,如果我们使用 concurrent.futures.ProcesssPoolExecutor 来执行我们的 CPU 绑定任务呢?

def main():
    with ProcessPoolExecutor() as executor:
        numbers = [200_000_000, 50_000_000]
        for result in executor.map(sum_to_num, numbers):
            print(f"sum_to_num got a result which is {result}.")

如代码所示,一切看起来都很棒,并且就像 asyncio.as_completed 一样被调用。但是看看结果;它们仍按启动顺序获取。这与 asyncio.as_completed 完全不同,后者按照执行顺序获取结果:

alt
alt

使用 asyncio 的 run_in_executor 修复

幸运的是,我们可以使用 asyncio 来处理 IO-bound 任务,它的 run_in_executor 方法可以像 asyncio 一样调用多进程任务。不仅统一了并发和并行的API,还解决了我们上面遇到的各种问题:

async def main():
    loop = asyncio.get_running_loop()
    tasks = []

    with ProcessPoolExecutor() as executor:
        for number in [200_000_000, 50_000_000]:
            tasks.append(loop.run_in_executor(executor, sum_to_num, number))
        
        # Or we can just use the method asyncio.gather(*tasks)
        for done in asyncio.as_completed(tasks):
            result = await done
            print(f"sum_to_num got a result which is {result}")
alt

由于上一篇的示例代码都是模拟我们应该调用的并发过程的方法,所以很多读者在学习之后在实际编码中还是需要帮助理解如何使用。所以在了解了为什么我们需要在asyncio中执行CPU-bound并行任务之后,今天我们将通过一个真实世界的例子来解释如何使用asyncio同时处理IO-bound和CPU-bound任务,并领略asyncio对我们的效率代码。

Reference

[1]

Source: https://towardsdatascience.com/combining-multiprocessing-and-asyncio-in-python-for-performance-boosts-15496ffe96b

本文由 mdnice 多平台发布

相关文章:

Python: 结合多进程和 Asyncio 以提高性能

动动发财的小手,点个赞吧! 简介 多亏了 GIL,使用多个线程来执行 CPU 密集型任务从来都不是一种选择。随着多核 CPU 的普及,Python 提供了一种多处理解决方案来执行 CPU 密集型任务。但是直到现在,直接使用多进程相关的…...

只需要两步就能快速接入GPT

缘起 最近一个朋友提出,让我出个关于如何快速接入GPT的教程,今天就给大家安排上。 需要的工具 经过实测,这是迄今为止最便捷的接入方式,而且亲测有效。 首先,第一步你需要下载最新版的微软Edge浏览器,去…...

使用Git-lfs上传超过100m的大文件到GitHub

文章目录 1. 安装 git-lfs2. 在Git中安装git-ifs3. 找到工程中的所有大文件4.执行完这行命令,项目目录下会生成文件 .gitattributes,此时Git push将 .gitattributes 提交到远程仓库。 5. 需要注意的事 1. 安装 git-lfs Git Large File Storage | Git La…...

【网络】计算机中的网络

目录 🍁计算机网络 🍁计算机网络模型 🍁布线工程 🍁布线系统 🦐博客主页:大虾好吃吗的博客 🦐专栏地址:网络专栏 计算机网络 计算机网络的功能 数据通信、资源共享、增加可靠性、提…...

什么是语音识别的语音助手?

前言 语音助手已经成为现代生活中不可或缺的一部分。人们可以通过语音助手进行各种操作,如查询天气、播放音乐、发送短信等。语音助手的核心技术是语音识别。本文将详细介绍语音识别的语音助手。 语音识别的基本原理 语音识别是将语音信号转换为文本的技术。语音识…...

自己动手写一个加载器

前言 当在 linux 命令行中 ./ 运行一个程序时,实际上操作系统会调用加载器将这个程序加载到内存中去执行。为了探究加载器的行为,今天我们就自己动手写一个简单的加载器。 工作原理 加载器的工作原理: 从磁盘读取 bin 文件到内存&#xf…...

C# 性能优化和Unity性能优化

C# 性能优化 C# 性能优化是一个非常广泛的话题,需要从各个方面来考虑,包括算法和数据结构、编译器优化、代码优化等等。下面是一些常见的 C# 性能优化技巧: 选择正确的数据结构:C# 提供了各种不同的数据结构,例如数组、…...

面试题背麻了,花3个月面过华为测开岗,拿个26K不过分吧?

计算机专业,代码能力一般,之前有过两段实习以及一个学校项目经历。第一份实习是大二暑期在深圳的一家互联网公司做前端开发,第二份实习由于大三暑假回国的时间比较短(小于两个月),于是找的实习是在一家初创…...

跟着我学 AI丨教育 + AI = 一对一教学

随着人工智能(AI)技术的迅速发展,它已经开始了改变教育的方式。本文将介绍AI在教育行业中的应用场景,当前从事AI 教育的公司有哪些以及这些公司所提供的教育产品的特点,和未来AI 教育的潜在实现方式。 AI在教育行业的…...

1-动态规划算法理论基础

目录 1.什么是动态规划? PS:动态规划 VS 贪心 2.动态规划的解题步骤 ①确定dp数组(dp table)以及下标的含义。 ②确定递推公式/状态转移公式。 ③dp数组如何初始化。 ④确定遍历顺序。 ⑤举例推导dp数组。 3.动态规划应该如何debug…...

kafka延时队列内部应用简介

kafka延时队列_悠然予夏的博客-CSDN博客 两个follower副本都已经拉取到了leader副本的最新位置,此时又向leader副本发送拉取请求,而leader副本并没有新的消息写入,那么此时leader副本该如何处理呢?可以直接返回空的拉取结…...

【网络】HTTPHTTPS协议

文章目录 HTTP协议认识URLurlencode和urldecodeHTTP协议格式HTTP请求协议格式简单的小实验 HTTP响应协议格式关于封装解包分用 HTTP的方法关于GET和POST方法概念GET&POST对比(代码测试)测试POST和GET方法的区别 HTTP的状态码关于重定向的状态码临时重定向的代码演示: HTTP的…...

因子图优化

最大后验概率估计问题 我们常将状态估计问题建模为最大后验估计(MAP)。之所以命名为最大后验估计,是因为它在给定了观测 Z \bm Z Z的情况下,最大化状态 X \bm X X的后验概率密度 p ( X ∣ Z ) p(\bm X|\bm Z) p(X∣Z) X M A P …...

JVM 垃圾回收相关算法

垃圾标记阶段 对象存活判断: 在堆里存放着几乎所有的 Java 对象实例,在GC 执行垃圾回收之前,首先需要区分出内存中哪些是存活对象,哪些是已经死亡的对象。只有被标记为已经死亡的对象,GC 才会在执行垃圾回收时,释放掉…...

[Bing Chat] 以某某这个数据结构 编一个故事 要求不能说出某某这个数据结构

以二叉搜索树这个数据结构 编一个故事 要求不能说出二叉搜索树这个数据结构 好的,我试试。这是我编的一个故事,希望你喜欢: 有一天,小明要去参加一个数学竞赛,他需要在有限的时间内回答很多问题。他发现,有…...

【算法】【算法杂谈】一种字符串和数字的对应关系

目录 前言问题介绍解决方案代码编写java语言版本c语言版本c语言版本 思考感悟写在最后 前言 当前所有算法都使用测试用例运行过,但是不保证100%的测试用例,如果存在问题务必联系批评指正~ 在此感谢左大神让我对算法有了新的感悟认识! 问题介…...

Java并发基础理论

Java并发基础理论 进程与线程 进程 ​ 进程是程序的一次执行过程,是系统运行程序的基本单位,因为进程是动态的。系统运行一个程序就是一个进程从创建运行到消亡的过程。 ​ 我们启动main方法其实就是启动了一个JVM进程,而main方法所在的线…...

ubuntu22.04静态ip设置(桥接模式、only-host+NAT模式)

在创建一台虚拟机后,默认的方式往往是通过DHCP动态的进行分配,DHCP服务器会告知创建的虚拟机分配到的ip地址,网关地址等信息。所以在创建好虚拟机之后,这些信息都不需要我们来配置,我们直接用就好了。 但是&#xff0…...

深度模型中的正则化、梯度裁剪、偏置初始化操作

最近调试代码,发现怎么调试都不行,就想着用一些优化方式,然后又不是很清楚这些优化方式的具体细节,然后就学习了一下,这里记录下来,方便以后查阅。 深度模型中的正则化、梯度裁剪、偏置初始化操作 正则化常…...

设计模式之装饰模式

定义 装饰模式指的是在不必改变原类文件和使用继承的情况下,动态地扩展一个对象的功能。它是通过创建一个包装对象,也就是装饰来包裹真实的对象。 模式特点 (1) 装饰对象和真实对象有相同的接口。这样客户端对象就能以和真实对…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...

raid存储技术

1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划,涵盖存储系统的布局、数据存储策略等,它明确数据如何存储、管理与访问,为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...