当前位置: 首页 > news >正文

Python: 结合多进程和 Asyncio 以提高性能

动动发财的小手,点个赞吧!

简介

多亏了 GIL,使用多个线程来执行 CPU 密集型任务从来都不是一种选择。随着多核 CPU 的普及,Python 提供了一种多处理解决方案来执行 CPU 密集型任务。但是直到现在,直接使用多进程相关的API还是存在一些问题。

本文[1]开始之前,我们还有一小段代码来帮助演示:

import time
from multiprocessing import Process


def sum_to_num(final_num: int) -> int:
    start = time.monotonic()

    result = 0
    for i in range(0, final_num+11):
        result += i

    print(f"The method with {final_num} completed in {time.monotonic() - start:.2f} second(s).")
    return result

该方法接受一个参数并从 0 开始累加到该参数。打印方法执行时间并返回结果。

多进程存在的问题

def main():
    # We initialize the two processes with two parameters, from largest to smallest
    process_a = Process(target=sum_to_num, args=(200_000_000,))
    process_b = Process(target=sum_to_num, args=(50_000_000,))

    # And then let them start executing
    process_a.start()
    process_b.start()

    # Note that the join method is blocking and gets results sequentially
    start_a = time.monotonic()
    process_a.join()
    print(f"Process_a completed in {time.monotonic() - start_a:.2f} seconds")

    # Because when we wait process_a for join. The process_b has joined already.
    # so the time counter is 0 seconds.
    start_b = time.monotonic()
    process_b.join()
    print(f"Process_b completed in {time.monotonic() - start_b:.2f} seconds")

如代码所示,我们直接创建并启动多个进程,调用每个进程的start和join方法。但是,这里存在一些问题:

  1. join 方法不能返回任务执行的结果。
  2. join 方法阻塞主进程并按顺序执行它。

即使后面的任务比前面的任务执行得更快,如下图所示:

alt
alt

使用池的问题

如果我们使用multiprocessing.Pool,也会存在一些问题:

def main():
    with Pool() as pool:
        result_a = pool.apply(sum_to_num, args=(200_000_000,))
        result_b = pool.apply(sum_to_num, args=(50_000_000,))

        print(f"sum_to_num with 200_000_000 got a result of {result_a}.")
        print(f"sum_to_num with 50_000_000 got a result of {result_b}.")

如代码所示,Pool 的 apply 方法是同步的,这意味着您必须等待之前的 apply 任务完成才能开始执行下一个 apply 任务。

alt

当然,我们可以使用 apply_async 方法异步创建任务。但是同样,您需要使用 get 方法来阻塞地获取结果。它让我们回到 join 方法的问题:

def main():
    with Pool() as pool:
        result_a = pool.apply_async(sum_to_num, args=(200_000_000,))
        result_b = pool.apply_async(sum_to_num, args=(50_000_000,))

        print(f"sum_to_num with 200_000_000 got a result of {result_a.get()}.")
        print(f"sum_to_num with 50_000_000 got a result of {result_b.get()}.")
alt

直接使用ProcessPoolExecutor的问题

那么,如果我们使用 concurrent.futures.ProcesssPoolExecutor 来执行我们的 CPU 绑定任务呢?

def main():
    with ProcessPoolExecutor() as executor:
        numbers = [200_000_000, 50_000_000]
        for result in executor.map(sum_to_num, numbers):
            print(f"sum_to_num got a result which is {result}.")

如代码所示,一切看起来都很棒,并且就像 asyncio.as_completed 一样被调用。但是看看结果;它们仍按启动顺序获取。这与 asyncio.as_completed 完全不同,后者按照执行顺序获取结果:

alt
alt

使用 asyncio 的 run_in_executor 修复

幸运的是,我们可以使用 asyncio 来处理 IO-bound 任务,它的 run_in_executor 方法可以像 asyncio 一样调用多进程任务。不仅统一了并发和并行的API,还解决了我们上面遇到的各种问题:

async def main():
    loop = asyncio.get_running_loop()
    tasks = []

    with ProcessPoolExecutor() as executor:
        for number in [200_000_000, 50_000_000]:
            tasks.append(loop.run_in_executor(executor, sum_to_num, number))
        
        # Or we can just use the method asyncio.gather(*tasks)
        for done in asyncio.as_completed(tasks):
            result = await done
            print(f"sum_to_num got a result which is {result}")
alt

由于上一篇的示例代码都是模拟我们应该调用的并发过程的方法,所以很多读者在学习之后在实际编码中还是需要帮助理解如何使用。所以在了解了为什么我们需要在asyncio中执行CPU-bound并行任务之后,今天我们将通过一个真实世界的例子来解释如何使用asyncio同时处理IO-bound和CPU-bound任务,并领略asyncio对我们的效率代码。

Reference

[1]

Source: https://towardsdatascience.com/combining-multiprocessing-and-asyncio-in-python-for-performance-boosts-15496ffe96b

本文由 mdnice 多平台发布

相关文章:

Python: 结合多进程和 Asyncio 以提高性能

动动发财的小手,点个赞吧! 简介 多亏了 GIL,使用多个线程来执行 CPU 密集型任务从来都不是一种选择。随着多核 CPU 的普及,Python 提供了一种多处理解决方案来执行 CPU 密集型任务。但是直到现在,直接使用多进程相关的…...

只需要两步就能快速接入GPT

缘起 最近一个朋友提出,让我出个关于如何快速接入GPT的教程,今天就给大家安排上。 需要的工具 经过实测,这是迄今为止最便捷的接入方式,而且亲测有效。 首先,第一步你需要下载最新版的微软Edge浏览器,去…...

使用Git-lfs上传超过100m的大文件到GitHub

文章目录 1. 安装 git-lfs2. 在Git中安装git-ifs3. 找到工程中的所有大文件4.执行完这行命令,项目目录下会生成文件 .gitattributes,此时Git push将 .gitattributes 提交到远程仓库。 5. 需要注意的事 1. 安装 git-lfs Git Large File Storage | Git La…...

【网络】计算机中的网络

目录 🍁计算机网络 🍁计算机网络模型 🍁布线工程 🍁布线系统 🦐博客主页:大虾好吃吗的博客 🦐专栏地址:网络专栏 计算机网络 计算机网络的功能 数据通信、资源共享、增加可靠性、提…...

什么是语音识别的语音助手?

前言 语音助手已经成为现代生活中不可或缺的一部分。人们可以通过语音助手进行各种操作,如查询天气、播放音乐、发送短信等。语音助手的核心技术是语音识别。本文将详细介绍语音识别的语音助手。 语音识别的基本原理 语音识别是将语音信号转换为文本的技术。语音识…...

自己动手写一个加载器

前言 当在 linux 命令行中 ./ 运行一个程序时,实际上操作系统会调用加载器将这个程序加载到内存中去执行。为了探究加载器的行为,今天我们就自己动手写一个简单的加载器。 工作原理 加载器的工作原理: 从磁盘读取 bin 文件到内存&#xf…...

C# 性能优化和Unity性能优化

C# 性能优化 C# 性能优化是一个非常广泛的话题,需要从各个方面来考虑,包括算法和数据结构、编译器优化、代码优化等等。下面是一些常见的 C# 性能优化技巧: 选择正确的数据结构:C# 提供了各种不同的数据结构,例如数组、…...

面试题背麻了,花3个月面过华为测开岗,拿个26K不过分吧?

计算机专业,代码能力一般,之前有过两段实习以及一个学校项目经历。第一份实习是大二暑期在深圳的一家互联网公司做前端开发,第二份实习由于大三暑假回国的时间比较短(小于两个月),于是找的实习是在一家初创…...

跟着我学 AI丨教育 + AI = 一对一教学

随着人工智能(AI)技术的迅速发展,它已经开始了改变教育的方式。本文将介绍AI在教育行业中的应用场景,当前从事AI 教育的公司有哪些以及这些公司所提供的教育产品的特点,和未来AI 教育的潜在实现方式。 AI在教育行业的…...

1-动态规划算法理论基础

目录 1.什么是动态规划? PS:动态规划 VS 贪心 2.动态规划的解题步骤 ①确定dp数组(dp table)以及下标的含义。 ②确定递推公式/状态转移公式。 ③dp数组如何初始化。 ④确定遍历顺序。 ⑤举例推导dp数组。 3.动态规划应该如何debug…...

kafka延时队列内部应用简介

kafka延时队列_悠然予夏的博客-CSDN博客 两个follower副本都已经拉取到了leader副本的最新位置,此时又向leader副本发送拉取请求,而leader副本并没有新的消息写入,那么此时leader副本该如何处理呢?可以直接返回空的拉取结…...

【网络】HTTPHTTPS协议

文章目录 HTTP协议认识URLurlencode和urldecodeHTTP协议格式HTTP请求协议格式简单的小实验 HTTP响应协议格式关于封装解包分用 HTTP的方法关于GET和POST方法概念GET&POST对比(代码测试)测试POST和GET方法的区别 HTTP的状态码关于重定向的状态码临时重定向的代码演示: HTTP的…...

因子图优化

最大后验概率估计问题 我们常将状态估计问题建模为最大后验估计(MAP)。之所以命名为最大后验估计,是因为它在给定了观测 Z \bm Z Z的情况下,最大化状态 X \bm X X的后验概率密度 p ( X ∣ Z ) p(\bm X|\bm Z) p(X∣Z) X M A P …...

JVM 垃圾回收相关算法

垃圾标记阶段 对象存活判断: 在堆里存放着几乎所有的 Java 对象实例,在GC 执行垃圾回收之前,首先需要区分出内存中哪些是存活对象,哪些是已经死亡的对象。只有被标记为已经死亡的对象,GC 才会在执行垃圾回收时,释放掉…...

[Bing Chat] 以某某这个数据结构 编一个故事 要求不能说出某某这个数据结构

以二叉搜索树这个数据结构 编一个故事 要求不能说出二叉搜索树这个数据结构 好的,我试试。这是我编的一个故事,希望你喜欢: 有一天,小明要去参加一个数学竞赛,他需要在有限的时间内回答很多问题。他发现,有…...

【算法】【算法杂谈】一种字符串和数字的对应关系

目录 前言问题介绍解决方案代码编写java语言版本c语言版本c语言版本 思考感悟写在最后 前言 当前所有算法都使用测试用例运行过,但是不保证100%的测试用例,如果存在问题务必联系批评指正~ 在此感谢左大神让我对算法有了新的感悟认识! 问题介…...

Java并发基础理论

Java并发基础理论 进程与线程 进程 ​ 进程是程序的一次执行过程,是系统运行程序的基本单位,因为进程是动态的。系统运行一个程序就是一个进程从创建运行到消亡的过程。 ​ 我们启动main方法其实就是启动了一个JVM进程,而main方法所在的线…...

ubuntu22.04静态ip设置(桥接模式、only-host+NAT模式)

在创建一台虚拟机后,默认的方式往往是通过DHCP动态的进行分配,DHCP服务器会告知创建的虚拟机分配到的ip地址,网关地址等信息。所以在创建好虚拟机之后,这些信息都不需要我们来配置,我们直接用就好了。 但是&#xff0…...

深度模型中的正则化、梯度裁剪、偏置初始化操作

最近调试代码,发现怎么调试都不行,就想着用一些优化方式,然后又不是很清楚这些优化方式的具体细节,然后就学习了一下,这里记录下来,方便以后查阅。 深度模型中的正则化、梯度裁剪、偏置初始化操作 正则化常…...

设计模式之装饰模式

定义 装饰模式指的是在不必改变原类文件和使用继承的情况下,动态地扩展一个对象的功能。它是通过创建一个包装对象,也就是装饰来包裹真实的对象。 模式特点 (1) 装饰对象和真实对象有相同的接口。这样客户端对象就能以和真实对…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

算术操作符与类型转换:从基础到精通

目录 前言:从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符:、-、*、/、% 赋值操作符:和复合赋值 单⽬操作符:、--、、- 前言:从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...