当前位置: 首页 > news >正文

内存泄漏的原因,内存泄漏如何避免?内存泄漏如何定位?

1. 内存溢出

内存溢出 OOM (out of memory),是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;比如申请了一个int,但给它存了long才能存下的数,那就是内存溢出。

2. 内存泄漏 

内存泄露 memory leak,是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。最终的结果就是导致OOM。

内存泄漏是指你向系统申请分配内存进行使用(new),可是使用完了以后却不归还(delete),结果你申请到的那块内存你自己也不能再访问(也许你把它的地址给弄丢了),而系统也不能再次将它分配给需要的程序。

3. 造成内存泄露常见的三种情况

1,指针重新赋值

2,错误的内存释放

3,返回值的不正确处理

3.1 指针重新赋值

如下代码:

char * p = (char *)malloc(10);
char * np = (char *)malloc(10);
其中,指针变量 p 和 np 分别被分配了 10 个字节的内存。

如果程序需要执行如下赋值语句:

p=np;
这时候,指针变量 p 被 np 指针重新赋值,其结果是 p 以前所指向的内存位置变成了孤立的内存。它无法释放,因为没有指向该位置的引用,从而导致 10 字节的内存泄漏。

因此,在对指针赋值前,一定确保内存位置不会变为孤立的。

类似的情况,连续重复new的情况也是类似:

 int *p = new int; p = new int...;//错误

3.2 错误的内存释放

假设有一个指针变量 p,它指向一个 10 字节的内存位置。该内存位置的第三个字节又指向某个动态分配的 10 字节的内存位置。

如果程序需要执行如下赋值语句时:

free(p);

很显然,如果通过调用 free 来释放指针 p,则 np 指针也会因此而变得无效。np 以前所指向的内存位置也无法释放,因为已经没有指向该位置的指针。换句话说,np 所指向的内存位置变为孤立的,从而导致内存泄漏。

因此,每当释放结构化的元素,而该元素又包含指向动态分配的内存位置的指针时,应首先遍历子内存位置(如本示例中的 np),并从那里开始释放,然后再遍历回父节点,如下面的代码所示:

free(p->np);
free(p);

3.3 返回值的不正确处理

有时候,某些函数会返回对动态分配的内存的引用,如下面的示例代码所示:

char *f(){return (char *)malloc(10);
}
void f1(){f();
}

函数 f1 中对 f 函数的调用并未处理该内存位置的返回地址,其结果将导致 f 函数所分配的 10 个字节的块丢失,并导致内存泄漏。

4 在内存分配后忘记使用 free 进行释放

4. 如何避免内存泄露?

  • 确保没有在访问空指针。

  • 每个内存分配函数都应该有一个 free 函数与之对应,alloca 函数除外。

  • 每次分配内存之后都应该及时进行初始化,可以结合 memset 函数进行初始化,calloc 函数除外。

  • 每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。

  • 在对指针赋值前,一定要确保没有内存位置会变为孤立的。

  • 每当释放结构化的元素(而该元素又包含指向动态分配的内存位置的指针)时,都应先遍历子内存位置并从那里开始释放,然后再遍历回父节点。

  • 始终正确处理返回动态分配的内存引用的函数返回值。

5.定位内存泄漏(valgrind)(重点)

5.1、基本概念

Valgrind是一个GPL的软件,用于Linux(For x86, amd64 and ppc32)程序的内存调试和代码剖析。你可以在它的环境中运行你的程序来监视内存的使用情况,比如C 语言中的malloc和free或者 C++中的new和 delete。使用Valgrind的工具包,你可以自动的检测许多内存管理和线程的bug,避免花费太多的时间在bug寻找上,使得你的程序更加稳固。

安装Valgrind

//valgrind下载:
http://valgrind.org/downloads/valgrind-3.12.0.tar.bz2valgrind安装:
1. tar -jxvf valgrind-3.12.0.tar.bz2
2. cd valgrind-3.12.0
3. ./configure
4. make
5. sudo make install

应用环境:Linux

编程语言:C/C++

使用方法: 编译时加上-g选项,如 gcc -g filename.c -o filename,使用如下命令检测内存使用情况:

最常用的命令格式:
valgrind --tool=memcheck --leak-check=full ./testvalgrind --tool=memcheck --leak-check=full --show-reachable=yes --trace-children=yes  ./filename其中--leak-check=full指的是完全检查内存泄漏,--show-reachable=yes是显示内存泄漏的地点,--trace-children=yes是跟入子进程。

如果您的程序是会正常退出的程序,那么当程序退出的时候valgrind自然会输出内存泄漏的信息。如果您的程序是个守护进程,那么也不要紧,我们 只要在别的终端下杀死memcheck进程(因为valgrind默认使用memcheck工具,就是默认参数--tools=memcheck)

参数选择

-tool=<name> 最常用的选项。运行 valgrind中名为toolname的工具。默认memcheck。memcheck ------> 这是valgrind应用最广泛的工具,一个重量级的内存检查器,能够发现开发中绝大多数内存错误使用情况,比如:使用未初始化的内存,使用已经释放了的内存,内存访问越界等。callgrind ------> 它主要用来检查程序中函数调用过程中出现的问题。cachegrind ------> 它主要用来检查程序中缓存使用出现的问题。helgrind ------> 它主要用来检查多线程程序中出现的竞争问题。massif ------> 它主要用来检查程序中堆栈使用中出现的问题。extension ------> 可以利用core提供的功能,自己编写特定的内存调试工具-h –help 显示帮助信息。-version 显示valgrind内核的版本,每个工具都有各自的版本。-q –quiet 安静地运行,只打印错误信息。-v –verbose 更详细的信息, 增加错误数统计。-trace-children=no|yes 跟踪子线程? [default: no]-track-fds=no|yes 跟踪打开的文件描述?[default: no]-time-stamp=no|yes 增加时间戳到LOG信息? [default: no]-log-fd=<number> 输出LOG到描述符文件 [2=stderr]-log-file=<file> 将输出的信息写入到filename.PID的文件里,PID是运行程序的进行ID-log-file-exactly=<file> 输出LOG信息到 file-log-file-qualifier=<VAR> 取得环境变量的值来做为输出信息的文件名。 [none]-log-socket=ipaddr:port 输出LOG到socket ,ipaddr:portLOG信息输出-xml=yes 将信息以xml格式输出,只有memcheck可用-num-callers=<number> show <number> callers in stack traces [12]-error-limit=no|yes 如果太多错误,则停止显示新错误? [yes]-error-exitcode=<number> 如果发现错误则返回错误代码 [0=disable]-db-attach=no|yes 当出现错误,valgrind会自动启动调试器gdb。[no]-db-command=<command> 启动调试器的命令行选项[gdb -nw %f %p]

设计思路:根据软件的内存操作维护一个有效地址空间表和无效地址空间表(进程的地址空间)

相关推荐视频

实时线上内存泄漏检测的4种实现方式,每一种都很重要

linux内存管理问题-如何理出自己的思路出来,开发与面试双丰收

学习地址:c/c++ linux服务器开发/后台架构师

需要C/C++ Linux服务器架构师学习资料加群812855908获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

​5.2、多个工具

1、Memcheck

最常用的工具,用来检测程序中出现的内存问题,所有对内存的读写都会被检测到,一切对malloc()/free()/new/delete的调用都会被捕获。所以,Memcheck 工具主要检查下面的程序错误

能够检测:

  • 使用未初始化的内存 (Use of uninitialised memory)

  • 使用已经释放了的内存 (Reading/writing memory after it has been free’d)

  • 使用超过 malloc分配的内存空间(Reading/writing off the end of malloc’d blocks)

  • 对堆栈的非法访问 (Reading/writing inappropriate areas on the stack)

  • 申请的空间是否有释放 (Memory leaks – where pointers to malloc’d blocks are lost forever)

  • malloc/free/new/delete申请和释放内存的匹配(Mismatched use of malloc/new/new [] vs free/delete/delete [])

  • src和dst的重叠(Overlapping src and dst pointers in memcpy() and related functions)

  • 重复free

Callgrind

和gprof类似的分析工具,但它对程序的运行观察更是入微,能给我们提供更多的信息。和gprof不同,它不需要在编译源代码时附加特殊选项,但加上调试选项是推荐的。Callgrind收集程序运行时的一些数据,建立函数调用关系图,还可以有选择地进行cache模拟。在运行结束时,它会把分析数据写入一个文件。callgrind_annotate可以把这个文件的内容转化成可读的形式。

Cachegrind

Cache分析器,它模拟CPU中的一级缓存I1,Dl和二级缓存,能够精确地指出程序中cache的丢失和命中。如果需要,它还能够为我们提供cache丢失次数,内存引用次数,以及每行代码,每个函数,每个模块,整个程序产生的指令数。这对优化程序有很大的帮助。

Helgrind

它主要用来检查多线程程序中出现的竞争问题。Helgrind寻找内存中被多个线程访问,而又没有一贯加锁的区域,这些区域往往是线程之间失去同步的地方,而且会导致难以发掘的错误。Helgrind实现了名为“Eraser”的竞争检测算法,并做了进一步改进,减少了报告错误的次数。不过,Helgrind仍然处于实验阶段。

Massif

堆栈分析器,它能测量程序在堆栈中使用了多少内存,告诉我们堆块,堆管理块和栈的大小。Massif能帮助我们减少内存的使用,在带有虚拟内存的现代系统中,它还能够加速我们程序的运行,减少程序停留在交换区中的几率。

5.3、使用原理

Memcheck 能够检测出内存问题,关键在于其建立了两个全局表。

1、Valid-Value 表:

对于进程的整个地址空间中的每一个字节(byte),都有与之对应的 8 个 bits;对于 CPU 的每个寄存器,也有一个与之对应的 bit 向量。这些 bits 负责记录该字节或者寄存器值是否具有有效的、已初始化的值。

2、Valid-Address 表

对于进程整个地址空间中的每一个字节(byte),还有与之对应的 1 个 bit,负责记录该地址是否能够被读写。

检测原理:

  • 当要读写内存中某个字节时,首先检查这个字节对应的 A bit。如果该A bit显示该位置是无效位置,memcheck 则报告读写错误。

  • 内核(core)类似于一个虚拟的 CPU 环境,这样当内存中的某个字节被加载到真实的 CPU 中时,该字节对应的 V bit也被加载到虚拟的 CPU 环境中。一旦寄存器中的值,被用来产生内存地址,或者该值能够影响程序输出,则 memcheck 会检查对应的V bits,如果该值尚未初始化,则会报告使用未初始化内存错误。

5.4、具体使用

1. 使用未初始化的内存(使用野指针)

这里我们定义了一个指针p,但并未给他开辟空间,即他是一个野指针,但我们却使用它了

​Valgrind检测出我们程序使用了未初始化的变量,但并未检测出内存泄漏。

​2.在内存被释放后进行读/写(使用野指针)

p所指向的内存被释放了,p变成了野指针,但是我们却继续使用这片内存。

​Valgrind检测出我们使用了已经free掉的内存,并给出这片内存是哪里分配哪里释放的。

​3.从已分配内存块的尾部进行读/写(动态内存越界)

我们动态地分配了一段数组,但我们在访问个数组时发生了越界读写,程序crash掉。

​Valgrind检测出越界的位置。

​注意:Valgrind不检查静态分配数组的使用情况!所以对静态分配的数组,Valgrind表示无能为力!比如下面的例子,程序crash掉,我们却不知道为什么。

​4.内存泄漏

内存泄漏的原因在于没有成对地使用malloc/free和new/delete,比如下面的例子。

​Valgrind会给出程序中malloc和free的出现次数以判断是否发生内存泄漏,比如对上面的程序运行memcheck,Valgrind的记录显示上面的程序用了1次malloc,却调用了0次free,明显发生了内存泄漏!

上面提示了我们可以使用–leak-check=full进一步获取内存泄漏的信息,比如malloc和free的具体行号。

5. 不匹配地使用malloc/new/new[] 和 free/delete/delete[]

正常使用new/delete和malloc/free是这样子的:

而不匹配地使用malloc/new/new[] 和 free/delete/delete[]则会被提示mismacth:

6.两次释放内存

double free的情况同样是根据malloc/free的匹配对数来体现的,比如free多了一次,Valgrind也会提示。

相关文章:

内存泄漏的原因,内存泄漏如何避免?内存泄漏如何定位?

1. 内存溢出 内存溢出 OOM &#xff08;out of memory&#xff09;&#xff0c;是指程序在申请内存时&#xff0c;没有足够的内存空间供其使用&#xff0c;出现out of memory&#xff1b;比如申请了一个int,但给它存了long才能存下的数&#xff0c;那就是内存溢出。 2. 内存泄…...

关于全志T113开发板接7寸LCD屏幕显示异常问题的解决方案

在入手全志T113之后&#xff0c;第一时间移植好了之前6ull平台的rootfs。但是在测试QT的过程中发现屏幕最右侧有一部分显示不正常&#xff0c;经过初步推测应该是RGB行场同步时序有问题。本以为在设备树里面稍作修改之后就能OK&#xff0c;但是居然前前后后一共花了至少三个星期…...

SpringMVC第四阶段:Controller中如何接收请求参数

Controller中如何接收请求参数 1、原生API参数类型 1.1、HttpServletRequest类 只需要在Controller的目标方法中, 直接写上HttpServletRequest对象即可获取 原生API的 request对象实例。 RequestMapping(value "/p1") public String param1(HttpServletRequest …...

第三十回: LisvtView响应事件

我们在上一章回中介绍了如何给ListView添加分隔线,本章回中将介绍ListView响应事件相关的知识.闲话休提&#xff0c;让我们一起Talk Flutter吧。 概念介绍 我们在这里说的ListView响应事件主要分两种类型&#xff1a; 一种是滑动ListView时ListView做出响应&#xff0c;我们…...

重磅!用友荣登全球5强

近日&#xff0c;全球权威信息技术研究和顾问公司Gartner发布《Market Share: All Software Markets, Worldwide&#xff0c;2022》报告&#xff0c;用友在EAM&#xff08;资产管理&#xff09;市场再创新高&#xff0c;市场占有率位居全球第五位&#xff0c;亚太第一位&#x…...

计算机组成原理实验报告二-认识汇编语言

实验资料&#xff1a; https://wwpv.lanzoue.com/b05drqjef 密码:d19t 使用txt文档编写下面C源码&#xff0c;文档命名为【学号_hello.c】并使用Mingw工具&#xff08;是 Minimalist GNU for Windows的缩写&#xff09;的bin文件夹下gcc.exe带选项编译&#xff08;&#xff09…...

都说计算机今年炸了,究竟炸到什么程度呢?

近期&#xff0c;最大的计算机领域新闻莫过于Intel CPU严重漏洞曝光。该漏洞被称为“Meltdown”和“Spectre”&#xff0c;几乎涵盖了所有使用Intel芯片的计算机&#xff0c;包括PC、笔记本电脑、服务器和移动设备。 Meltdown漏洞的主要风险是黑客可以利用此漏洞访问操作系统的…...

0Ω的电阻作用

0欧姆电阻即电阻标值为0欧姆的电阻&#xff0c;多用于PCB设计等方面&#xff0c;是一种理想电阻。那0欧姆电阻是表示没有电阻吗&#xff1f;当然不是&#xff0c;0欧姆电阻的阻值不是0欧姆&#xff0c;只是接近0欧姆。 1、调试方便或者兼容设计&#xff1a;可以选择器件、功能…...

02 PostGIS常用空间分析函数

常用的PostGIS空间分析函数清单&#xff1a; 序号函数名描述示例1ST_AsText(geometry)将几何对象转换为文本形式的WKT字符串ST_AsText(ST_GeomFromText(‘POINT(1 2)’)) 返回 ‘POINT(1 2)’2ST_GeometryType(geometry)返回几何对象的类型&#xff0c;如POINT、LINESTRING、P…...

[Golang] 管理日志信息就用Zap包

&#x1f61a;一个不甘平凡的普通人&#xff0c;致力于为Golang社区和算法学习做出贡献&#xff0c;期待您的关注和认可&#xff0c;陪您一起学习打卡&#xff01;&#xff01;&#xff01;&#x1f618;&#x1f618;&#x1f618; &#x1f917;专栏&#xff1a;算法学习 &am…...

【pytest】执行环境切换的两种解决方案

一、痛点分析 在实际企业的项目中&#xff0c;自动化测试的代码往往需要在不同的环境中进行切换&#xff0c;比如多套测试环境、预上线环境、UAT环境、线上环境等等&#xff0c;并且在DevOps理念中&#xff0c;往往自动化都会与Jenkins进行CI/CD&#xff0c;不论是定时执行策略…...

2023国赛tomcat题

环境: 10.10.120.128 安装 tomcaA 10.10.120.129 安装tomcatB 10.10.120.130 安装 nginx 配置dns: 正向解析 反向解析 Tomcat ssl配置 [root@localhost ~]# tar -zxvf jdk-11.0.8_linux-x64_bin.tar.gz [root@localhost ~]# mv jdk-11.0.8 /usr/local/ Vim /etc/profile …...

计算机视觉——day 92 基于跨领域协作学习的单图像去雨

基于跨领域协作学习的单图像去雨 1. Introduction3. Proposed method3.1 网络架构 4. Experiments and results4.1 数据集和指标4.3 合成图像的结果4.8 建模复杂度和运行时间 5. Conclusion 1. Introduction 深度卷积神经网络(DCNN)在图像解析任务中取得了优异的性能。然而&am…...

Java 正则表达式

Java 正则表达式 正则表达式定义了字符串的模式。 正则表达式可以用来搜索、编辑或处理文本。 正则表达式并不仅限于某一种语言&#xff0c;但是在每种语言中有细微的差别。 示例 boolean b String.matches(String regex) ;regex 有2种形式&#xff1a; 字符串 直接就是一…...

Oracle索引知识看这一篇就足够

&#x1f3c6; 文章目标&#xff1a;本篇介绍Oracle索引知识以及案例场景 &#x1f340; Oracle索引知识看这一篇就足够 ✅ 创作者&#xff1a;Jay… &#x1f389; 个人主页&#xff1a;Jay的个人主页 &#x1f341; 展望&#xff1a;若本篇讲解内容帮助到您&#xff0c;请帮忙…...

kafka命令行操作

新老版本kafka命令行操作 啓動Kafka&#xff1a; kafka-server-start.sh -daemon $KAFKA_HOME/config/server.properties Kafka命令行操作 查看当前集群中已存在的主题topic 旧的方式 kafka-topics.sh --zookeeper bdphdp01:2181 --list kafka-topics.sh --zookeeper bdphd…...

Pinia 上手使用(store、state、getters、actions)

参考链接&#xff1a;https://juejin.cn/post/7121209657678364685 Pinia官方&#xff1a;https://pinia.vuejs.org/zh/introduction.html 一、安装 npm i pinia -S二、main.js 引入 import { createApp } from "vue" import App from "./App.vue" impor…...

C++小项目之文本编辑器mynote(1.0.0版本)

2023年5月19日&#xff0c;周五晚上&#xff1a; 今天晚上突然想写一个运行在命令行上的文本编辑器&#xff0c;因为平时写文本时老是要创建新的文本文件&#xff0c;觉得太麻烦了。捣鼓了一个晚上&#xff0c;才选出一个我觉得比较满意的。我把这个程序添加到了系统环境变量中…...

人工智能的界面革命,消费者与企业互动的方式即将发生变化。

本文来源于 digitalnative.substack.com/p/ais-interface-revolution 描述了一种社会现象&#xff1a; 随着真实友谊的减少和虚拟友谊的增加&#xff0c;越来越多的人开始将AI聊天机器人视为自己的朋友&#xff0c;甚至建立了深厚的情感纽带。这可能与当前人们越来越孤独的现实…...

深度学习课程:手写体识别示例代码和详细注释

Pytorch 的快速入门&#xff0c;参见 通过两个神经元的极简模型&#xff0c;清晰透视 Pytorch 工作原理。本文结合手写体识别项目&#xff0c;给出一个具体示例和直接关联代码的解释。 1. 代码 下面代码展示了完整的手写体识别的 Python 程序代码。代码中有少量注释。在本文后…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

Matlab实现任意伪彩色图像可视化显示

Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中&#xff0c;如何展示好看的实验结果图像非常重要&#xff01;&#xff01;&#xff01; 1、灰度原始图像 灰度图像每个像素点只有一个数值&#xff0c;代表该点的​​亮度&#xff08;或…...

【iOS】 Block再学习

iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...