量化特征贡献度函数:feature_importances_函数/LGBMClassifier/XGBClassifier
feature_importances_是scikit-learn机器学习库中许多模型对象的属性,在训练模型之后调用该属性可以输出各个特征在模型中的重要性。
示例代码:
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make_regression# 生成一个示例数据集
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)# 训练一个随机森林回归模型
rf = RandomForestRegressor(n_estimators=100, random_state=0)
rf.fit(X, y)# 输出特征的重要性
print(rf.feature_importances_)
在上述代码中,我们训练了一个随机森林回归模型,并使用feature_importances_输出了各个特征的重要性。输出结果为:[0.08519548, 0.39799048, 0.40214713, 0.11466691],即第2个特征和第3个特征在模型中较为重要,而第1个和第4个特征的重要性相对较低。
通过观察特征的重要性分布情况,我们可以了解到哪些特征在模型预测中有更高的权重,从而可以进行模型的优化和特征的筛选。
LGBMClassifier
LGBMClassifier是一种基于决策树的集成型机器学习算法,它采用了基于梯度提升树(Gradient Boosting Decision Tree)的模型框架,并具有高效、灵活、精度高的特点。由于算法的高效性,LGBMClassifier逐渐成为机器学习领域中的常用算法。
LGBMClassifier的主要优势:
-
高效:相对其它基于梯度提升树的算法,LGBMClassifier 显著提高了运行速度。
-
精度高:LGBMClassifier 在大数据集上的训练精度能够与同类别的算法相比较。
-
支持并行化:LGBMClassifier 支持类似多线程的并行化处理,这可以大大提升训练效率。
-
可定制度高:LGBMClassifier 与其他集成的决策树模型一样,能够支持很多的调整方法。
示例代码:
from lightgbm import LGBMClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_splitiris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)# 训练 LGBMClassifier 模型
model = LGBMClassifier()
model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = model.predict(X_test)# 输出模型的准确率
acc = model.score(X_test, y_test)
print("Accuracy is : ", acc)
在上述代码中,示例数据集使用了鸢尾花数据集,将其分成了训练集和测试集,使用LGBMClassifier训练模型并在测试集上进行预测,在测试集上输出了模型的准确率。
XGBClassifier
XGBClassifier是一种基于梯度提升决策树算法的分类器模型,它使用了XGBoost库作为基础实现。XGBClassifier具有高效率、准确性和鲁棒性的优点,在数据科学和机器学习中应用广泛。
在使用XGBClassifier进行分类时,需要先进行数据清洗、特征工程和数据准备。然后,通过调用XGBClassifier实例,并设置参数来创建分类器模型。下面是一些常用的参数设置:
- learning_rate:学习率,控制每次迭代的步长,默认为0.1。
- n_estimators:决策树的个数,即迭代次数,默认为100。
- max_depth:最大树深度,控制模型的复杂度,默认为6。
- subsample:随机采样比例,用于训练每个决策树的子样本比例,默认为1。
- colsample_bytree:列采样比例,用于训练每个决策树的特征子集比例,默认为1。
- objective:损失函数,用于评估分类器的性能,默认为“binary:logistic”,用于二分类问题。
- random_state:随机种子,用于确保模型的可重复性。
创建模型后,可以使用fit()方法拟合数据进行模型训练。训练完成后,可以使用predict()方法进行预测,并使用score()方法计算模型在测试集上的准确度。
相关文章:
量化特征贡献度函数:feature_importances_函数/LGBMClassifier/XGBClassifier
feature_importances_是scikit-learn机器学习库中许多模型对象的属性,在训练模型之后调用该属性可以输出各个特征在模型中的重要性。 示例代码: from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import make_regression# 生…...

总结JVM重要知识点
一.类加载和创建对象的过程 1.类加载 1.编译 : 将源码文件(.java)编译成JVM可以解释的.class文件 . 语法分析>语义分析>注解处理 , 生成class文件 2.加载 : 装载 : 字节码本来存储在硬盘上 , 需要运行时 , 有类加载系统负责将类的信息加载到内存中(方法区) , 使用的是类…...

奇技淫巧第8期
学无止境。 下面是对去年11月至今年5月的零散知识点总结。 春节期间好好放松了一两个月,来校后又懒散的度过了一两个月,直到论文评审意见下来,才开启冲刺模式狂干了一两个月。总的来说,这半年来摸的时间比较多。好,不废…...

这个 归并排序详解过程 我能吹一辈子!!!
文章目录 归并排序概念归并排序算法思路归并排序递归实现归并排序非递归实现 归并排序概念 1945年,约翰冯诺依曼(John von Neumann)发明了归并排序,这是典型的分治算法的应用。 归并排序(Merge sort)是建立…...
docker版jxTMS使用指南:自动生成代码
本文讲解4.0版jxTMS的自动生成代码功能, 整个系列的文章请查看:docker版jxTMS使用指南:4.0版升级内容 docker版本的使用,请参考:docker版jxTMS使用指南 任何一个管理系统都需要对管理对象进行管理,包括最…...

聚观早报 | 小冰启动GPT克隆人计划;ofo创始人在美创业改做咖啡
今日要闻:小冰启动“GPT克隆人计划”;ofo创始人在美创业改做咖啡;OpenAI正准备新的开源AI模型;青年失业率首破20%创新高;微软收购动视暴雪获批 小冰启动“GPT克隆人计划” 5 月 16 日,小冰公司…...

面试造航母,入职拧螺丝,工资离了个大谱...
有粉丝跟我吐槽说:金三银四去面试软件测试岗,真的是面试造航母,入职拧螺丝,工资还低 这种现象很正常,因为找一个测试员,当然希望他能做的业务越多越好,最好像机器猫一样,啥事儿都能…...

Python+selenium自动化元素定位防踩坑
在自动化UI测试过程中常常会在元素定位阶段就踩坑,碰到困扰已久的问题。 以下是个人整理元素定位报错原因和解决方法。 踩坑一:StaleElementReferenceException selenium.common.exceptions.StaleElementReferenceException: Message: stale element re…...

【计算机组成原理】实验一
文章目录 实验一 数据传送实验1. 实验目的2. 实验仪器3. 原理概述4. 实验内容步骤4.1 手动实验环境的建立4.2 手控传送实验 5. 实验结论及问题讨论 实验一 数据传送实验 1. 实验目的 2. 实验仪器 3. 原理概述 4. 实验内容步骤 4.1 手动实验环境的建立 1)初始待令状态 上电或…...
前端022_广告模块_修改功能
广告模块_修改功能 1、需求分析2、Mock添加查询数据3、Mock修改数据4、Api调用回显数据5、提交修改后的数据6、效果1、需求分析 需求分析 当点击 编辑 按钮后,弹出编辑窗口,并查询出分类相关信息进行渲染。修改后点击 确定 提交修改后的数据。 2、Mock添加查询数据 请求URL…...
makefile 学习(3):C++的编译及库文件的生成与链接
1. 介绍 C语言的相关后缀 .a 文件是一个静态库文件.c,.c ,.cp,.cpp,.cc,.cxx 这几种后缀都可以表示c的源文件.h ,.hpp c语言的头文件.i 是c预处理文件.o 目标文件.s汇编语言的文件.so 动态库或者共享库或者称为运行时库 2. C编译 2.1 预处理 g -E helloworld.cpp # 虽…...

Ceph crush运行图
Crush map介绍 ceph集群中由monitor负责维护的运行图包括: Monitor map:监视器运行图osd map:osd运行图PG map:PG运行图Crush map:crush运行图Mds map:mds运行图 crush map是ceph集群物理拓扑的抽象&…...

【分布族谱】泊松分布和二项分布、正态分布的关系
文章目录 泊松分布和二项分布的关系和正态分布的关系 泊松分布 如果在有限时间 ( 0 , 1 ) (0,1) (0,1)内进行 n n n次伯努利实验,那么每次伯努利实验所占用的时间为 1 n \frac{1}{n} n1,按照自然规律,一件事情肯定是时间越长越容易发生&am…...
关于QTreeWidget的setData函数
当使用 Q T r e e W i d g e t I t e m QTreeWidgetItem QTreeWidgetItem 的 s e t D a t a setData setData 方法时,需要传递三个参数,分别是列索引、角色和数据。 列索引:表示要设置数据的列的索引。 Q T r e e W i d g e t I t e m QTre…...

Microsoft Office 2003的安装
哈喽,大家好。今天一起学习的是office2003的安装,这个老版本的office可是XP操作系统的老搭档了,有兴趣的小伙伴也可以来一起试试手。 一、测试演示参数 演示操作系统:Windows XP 不建议win7及以上操作系统使用 系统类型ÿ…...
使用Spring Boot和Spring Cloud实现多租户架构:支持应用多租户部署和管理
使用Spring Boot和Spring Cloud实现多租户架构:支持应用多租户部署和管理 一、概述1 什么是多租户架构?2 多租户架构的优势3 实现多租户架构的技术选择 二、设计思路1 架构选型1.1 Spring Boot1.2 Spring Cloud 2 数据库设计3 应用多租户部署3.1 应用隔离…...

智聚北京!相约全球人力资源数智化峰会
人力资源是推动经济社会发展的第一资源。作为我国经济压舱石的中央企业在对标世界一流企业和管理提升方面的持续创新,各行业领军企业围绕组织变革、管理升级、全球化发展走深走实。人力资源管理正从传统职能管理与管控,向紧贴业务战略实现、组织边界和人…...

工业缺陷检测数据及代码(附代码)
介绍 目前,基于机器视觉的表面缺陷检测设备已广泛取代人工视觉检测,在包括3C、汽车、家电、机械制造、半导体与电子、化工、制药、航空航天、轻工等多个行业领域得到应用。传统的基于机器视觉的表面缺陷检测方法通常采用常规图像处理算法或人工设计的特征加分类器。一般而言…...

CentOS 安装MongoDB 6.0
一、安装依赖 yum install libcurl openssl xz-libs 二、下载安装包 安装包下载地址https://www.mongodb.com/try/download/community这里我选择的是 选择RedHat / CentOS 7.0平台的原因是我的操作系统使用的是CentOS 7.0的,需要下载与操作系统匹配的安装包 三、…...

美团面试,被拷打了一小时....
刚从美团走出来,被拷打了一小时…越想越觉得可惜,回想面试经过,好好总结了几个点,发现面试没过的主要原因是在几个关键的问题没有给到面试官想要的答案。从而失去了这次宝贵的机会。 根据你的工作经历,说说你对质量保证…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...