量化特征贡献度函数:feature_importances_函数/LGBMClassifier/XGBClassifier
feature_importances_是scikit-learn机器学习库中许多模型对象的属性,在训练模型之后调用该属性可以输出各个特征在模型中的重要性。
示例代码:
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make_regression# 生成一个示例数据集
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)# 训练一个随机森林回归模型
rf = RandomForestRegressor(n_estimators=100, random_state=0)
rf.fit(X, y)# 输出特征的重要性
print(rf.feature_importances_)
在上述代码中,我们训练了一个随机森林回归模型,并使用feature_importances_输出了各个特征的重要性。输出结果为:[0.08519548, 0.39799048, 0.40214713, 0.11466691],即第2个特征和第3个特征在模型中较为重要,而第1个和第4个特征的重要性相对较低。
通过观察特征的重要性分布情况,我们可以了解到哪些特征在模型预测中有更高的权重,从而可以进行模型的优化和特征的筛选。
LGBMClassifier
LGBMClassifier是一种基于决策树的集成型机器学习算法,它采用了基于梯度提升树(Gradient Boosting Decision Tree)的模型框架,并具有高效、灵活、精度高的特点。由于算法的高效性,LGBMClassifier逐渐成为机器学习领域中的常用算法。
LGBMClassifier的主要优势:
-
高效:相对其它基于梯度提升树的算法,LGBMClassifier 显著提高了运行速度。
-
精度高:LGBMClassifier 在大数据集上的训练精度能够与同类别的算法相比较。
-
支持并行化:LGBMClassifier 支持类似多线程的并行化处理,这可以大大提升训练效率。
-
可定制度高:LGBMClassifier 与其他集成的决策树模型一样,能够支持很多的调整方法。
示例代码:
from lightgbm import LGBMClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_splitiris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)# 训练 LGBMClassifier 模型
model = LGBMClassifier()
model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = model.predict(X_test)# 输出模型的准确率
acc = model.score(X_test, y_test)
print("Accuracy is : ", acc)
在上述代码中,示例数据集使用了鸢尾花数据集,将其分成了训练集和测试集,使用LGBMClassifier训练模型并在测试集上进行预测,在测试集上输出了模型的准确率。
XGBClassifier
XGBClassifier是一种基于梯度提升决策树算法的分类器模型,它使用了XGBoost库作为基础实现。XGBClassifier具有高效率、准确性和鲁棒性的优点,在数据科学和机器学习中应用广泛。
在使用XGBClassifier进行分类时,需要先进行数据清洗、特征工程和数据准备。然后,通过调用XGBClassifier实例,并设置参数来创建分类器模型。下面是一些常用的参数设置:
- learning_rate:学习率,控制每次迭代的步长,默认为0.1。
- n_estimators:决策树的个数,即迭代次数,默认为100。
- max_depth:最大树深度,控制模型的复杂度,默认为6。
- subsample:随机采样比例,用于训练每个决策树的子样本比例,默认为1。
- colsample_bytree:列采样比例,用于训练每个决策树的特征子集比例,默认为1。
- objective:损失函数,用于评估分类器的性能,默认为“binary:logistic”,用于二分类问题。
- random_state:随机种子,用于确保模型的可重复性。
创建模型后,可以使用fit()方法拟合数据进行模型训练。训练完成后,可以使用predict()方法进行预测,并使用score()方法计算模型在测试集上的准确度。
相关文章:
量化特征贡献度函数:feature_importances_函数/LGBMClassifier/XGBClassifier
feature_importances_是scikit-learn机器学习库中许多模型对象的属性,在训练模型之后调用该属性可以输出各个特征在模型中的重要性。 示例代码: from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import make_regression# 生…...
总结JVM重要知识点
一.类加载和创建对象的过程 1.类加载 1.编译 : 将源码文件(.java)编译成JVM可以解释的.class文件 . 语法分析>语义分析>注解处理 , 生成class文件 2.加载 : 装载 : 字节码本来存储在硬盘上 , 需要运行时 , 有类加载系统负责将类的信息加载到内存中(方法区) , 使用的是类…...
奇技淫巧第8期
学无止境。 下面是对去年11月至今年5月的零散知识点总结。 春节期间好好放松了一两个月,来校后又懒散的度过了一两个月,直到论文评审意见下来,才开启冲刺模式狂干了一两个月。总的来说,这半年来摸的时间比较多。好,不废…...
这个 归并排序详解过程 我能吹一辈子!!!
文章目录 归并排序概念归并排序算法思路归并排序递归实现归并排序非递归实现 归并排序概念 1945年,约翰冯诺依曼(John von Neumann)发明了归并排序,这是典型的分治算法的应用。 归并排序(Merge sort)是建立…...
docker版jxTMS使用指南:自动生成代码
本文讲解4.0版jxTMS的自动生成代码功能, 整个系列的文章请查看:docker版jxTMS使用指南:4.0版升级内容 docker版本的使用,请参考:docker版jxTMS使用指南 任何一个管理系统都需要对管理对象进行管理,包括最…...
聚观早报 | 小冰启动GPT克隆人计划;ofo创始人在美创业改做咖啡
今日要闻:小冰启动“GPT克隆人计划”;ofo创始人在美创业改做咖啡;OpenAI正准备新的开源AI模型;青年失业率首破20%创新高;微软收购动视暴雪获批 小冰启动“GPT克隆人计划” 5 月 16 日,小冰公司…...
面试造航母,入职拧螺丝,工资离了个大谱...
有粉丝跟我吐槽说:金三银四去面试软件测试岗,真的是面试造航母,入职拧螺丝,工资还低 这种现象很正常,因为找一个测试员,当然希望他能做的业务越多越好,最好像机器猫一样,啥事儿都能…...
Python+selenium自动化元素定位防踩坑
在自动化UI测试过程中常常会在元素定位阶段就踩坑,碰到困扰已久的问题。 以下是个人整理元素定位报错原因和解决方法。 踩坑一:StaleElementReferenceException selenium.common.exceptions.StaleElementReferenceException: Message: stale element re…...
【计算机组成原理】实验一
文章目录 实验一 数据传送实验1. 实验目的2. 实验仪器3. 原理概述4. 实验内容步骤4.1 手动实验环境的建立4.2 手控传送实验 5. 实验结论及问题讨论 实验一 数据传送实验 1. 实验目的 2. 实验仪器 3. 原理概述 4. 实验内容步骤 4.1 手动实验环境的建立 1)初始待令状态 上电或…...
前端022_广告模块_修改功能
广告模块_修改功能 1、需求分析2、Mock添加查询数据3、Mock修改数据4、Api调用回显数据5、提交修改后的数据6、效果1、需求分析 需求分析 当点击 编辑 按钮后,弹出编辑窗口,并查询出分类相关信息进行渲染。修改后点击 确定 提交修改后的数据。 2、Mock添加查询数据 请求URL…...
makefile 学习(3):C++的编译及库文件的生成与链接
1. 介绍 C语言的相关后缀 .a 文件是一个静态库文件.c,.c ,.cp,.cpp,.cc,.cxx 这几种后缀都可以表示c的源文件.h ,.hpp c语言的头文件.i 是c预处理文件.o 目标文件.s汇编语言的文件.so 动态库或者共享库或者称为运行时库 2. C编译 2.1 预处理 g -E helloworld.cpp # 虽…...
Ceph crush运行图
Crush map介绍 ceph集群中由monitor负责维护的运行图包括: Monitor map:监视器运行图osd map:osd运行图PG map:PG运行图Crush map:crush运行图Mds map:mds运行图 crush map是ceph集群物理拓扑的抽象&…...
【分布族谱】泊松分布和二项分布、正态分布的关系
文章目录 泊松分布和二项分布的关系和正态分布的关系 泊松分布 如果在有限时间 ( 0 , 1 ) (0,1) (0,1)内进行 n n n次伯努利实验,那么每次伯努利实验所占用的时间为 1 n \frac{1}{n} n1,按照自然规律,一件事情肯定是时间越长越容易发生&am…...
关于QTreeWidget的setData函数
当使用 Q T r e e W i d g e t I t e m QTreeWidgetItem QTreeWidgetItem 的 s e t D a t a setData setData 方法时,需要传递三个参数,分别是列索引、角色和数据。 列索引:表示要设置数据的列的索引。 Q T r e e W i d g e t I t e m QTre…...
Microsoft Office 2003的安装
哈喽,大家好。今天一起学习的是office2003的安装,这个老版本的office可是XP操作系统的老搭档了,有兴趣的小伙伴也可以来一起试试手。 一、测试演示参数 演示操作系统:Windows XP 不建议win7及以上操作系统使用 系统类型ÿ…...
使用Spring Boot和Spring Cloud实现多租户架构:支持应用多租户部署和管理
使用Spring Boot和Spring Cloud实现多租户架构:支持应用多租户部署和管理 一、概述1 什么是多租户架构?2 多租户架构的优势3 实现多租户架构的技术选择 二、设计思路1 架构选型1.1 Spring Boot1.2 Spring Cloud 2 数据库设计3 应用多租户部署3.1 应用隔离…...
智聚北京!相约全球人力资源数智化峰会
人力资源是推动经济社会发展的第一资源。作为我国经济压舱石的中央企业在对标世界一流企业和管理提升方面的持续创新,各行业领军企业围绕组织变革、管理升级、全球化发展走深走实。人力资源管理正从传统职能管理与管控,向紧贴业务战略实现、组织边界和人…...
工业缺陷检测数据及代码(附代码)
介绍 目前,基于机器视觉的表面缺陷检测设备已广泛取代人工视觉检测,在包括3C、汽车、家电、机械制造、半导体与电子、化工、制药、航空航天、轻工等多个行业领域得到应用。传统的基于机器视觉的表面缺陷检测方法通常采用常规图像处理算法或人工设计的特征加分类器。一般而言…...
CentOS 安装MongoDB 6.0
一、安装依赖 yum install libcurl openssl xz-libs 二、下载安装包 安装包下载地址https://www.mongodb.com/try/download/community这里我选择的是 选择RedHat / CentOS 7.0平台的原因是我的操作系统使用的是CentOS 7.0的,需要下载与操作系统匹配的安装包 三、…...
美团面试,被拷打了一小时....
刚从美团走出来,被拷打了一小时…越想越觉得可惜,回想面试经过,好好总结了几个点,发现面试没过的主要原因是在几个关键的问题没有给到面试官想要的答案。从而失去了这次宝贵的机会。 根据你的工作经历,说说你对质量保证…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
