当前位置: 首页 > news >正文

【从零开始写视觉SLAM】v0.1基于特征点的简单VO

v0.1版本的oSLAM实现了基于orb特征点的简单视觉里程计,通过连续两帧的rgbd数据实现相机相对位姿的估计。

读取RGBD数据
orb特征点提取
PnP/ICP位姿估计

这部分理论上相对简单一点,咱们就直接上实现。

  1. VisualOdometer类

VisualOdometer.hpp

#pragma once
#include <vector>
#include <opencv2/opencv.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include "Frame.hpp"namespace oSLAM
{class VisualOdometer{private:std::vector<Frame> frames;int max_key_points_num;double cx, cy, fx, fy;double depth_scale;std::vector<cv::DMatch> matches;void feature_extract(const cv::Mat& rgb, Frame& frame);void calc_depth(const cv::Mat& depth, Frame& frame);void feature_match(const Frame& ref, const Frame& cur, std::vector<cv::DMatch>& matches);void calc_pose_relative(const Frame& ref, Frame& cur, const std::vector<cv::DMatch>& matches);void pose_estimation_3d2d(const std::vector<cv::Point3d> &pts1, const std::vector<cv::Point2d> &pts2, cv::Mat &R, cv::Mat &t);void pose_estimation_3d3d(const std::vector<cv::Point3d> &pts1, const std::vector<cv::Point3d> &pts2, cv::Mat &R, cv::Mat &t);public:void add(double timestamp, const cv::Mat &rgb, const cv::Mat& depth);void set_pose(int frame_idx, const cv::Mat& R, const cv::Mat& T);void get_pose(int frame_idx, cv::Mat& R, cv::Mat& T);void get_3d_points(int frame_idx, std::vector<cv::Point3d> &key_points_3d);VisualOdometer(int max_key_points_num, double cx, double cy, double fx, double fy, double depth_scale);~VisualOdometer();};
}

VisualOdometer.cpp

#include "VisualOdometer.hpp"
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/SVD>using namespace oSLAM;
using namespace std;
using namespace cv;VisualOdometer::VisualOdometer(int max_key_points_num, double cx, double cy, double fx, double fy, double depth_scale)
{VisualOdometer::max_key_points_num = max_key_points_num;VisualOdometer::cx = cx;VisualOdometer::cy = cy;VisualOdometer::fx = fx;VisualOdometer::fy = fy;VisualOdometer::depth_scale = depth_scale;
}VisualOdometer::~VisualOdometer()
{
}void VisualOdometer::feature_extract(const cv::Mat &rgb, Frame &frame)
{Ptr<ORB> orb_detector = ORB::create(max_key_points_num);orb_detector->detect(rgb, frame.key_points);orb_detector->compute(rgb, frame.key_points, frame.descriptors);
}void VisualOdometer::calc_depth(const cv::Mat &depth, Frame &frame)
{for (int i=0;i<frame.key_points.size();i++){double x = frame.key_points[i].pt.x;double y = frame.key_points[i].pt.y;double dis = depth.at<uint16_t>(int(y),int(x)) / depth_scale;frame.key_points_3d.push_back(Point3d((x-cx)/fx*dis, (y-cy)/fy*dis, dis));}
}void VisualOdometer::pose_estimation_3d2d(const std::vector<cv::Point3d> &pts1, const std::vector<cv::Point2d> &pts2, cv::Mat &R, cv::Mat &t)
{// 利用PnP求解位姿初值Mat K = (Mat_<double>(3,3) << fx, 0, cx, 0, fy, cy,0, 0, 1);Mat rvec, tvec;solvePnPRansac(pts1, pts2, K, Mat::zeros(1, 5, CV_64FC1), rvec, tvec);Rodrigues(rvec, R);t = (Mat_<double>(3,1) << tvec.at<double>(0), tvec.at<double>(1), tvec.at<double>(2));// 优化位姿和3D点坐标// ToDo
}void VisualOdometer::pose_estimation_3d3d(const std::vector<cv::Point3d> &pts1, const std::vector<cv::Point3d> &pts2, cv::Mat &R, cv::Mat &t)
{Point3d p1(0, 0, 0), p2(0, 0, 0); // center of massint N = pts1.size();for (int i = 0; i < N; i++){p1 += pts1[i];p2 += pts2[i];}p1 = Point3d(Vec3d(p1) / N);p2 = Point3d(Vec3d(p2) / N);vector<Point3d> q1(N), q2(N); // remove the centerfor (int i = 0; i < N; i++){q1[i] = pts1[i] - p1;q2[i] = pts2[i] - p2;}// compute q1*q2^TEigen::Matrix3d W = Eigen::Matrix3d::Zero();for (int i = 0; i < N; i++){W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose();}// SVD on WEigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);Eigen::Matrix3d U = svd.matrixU();Eigen::Matrix3d V = svd.matrixV();Eigen::Matrix3d R_ = U * (V.transpose());if (R_.determinant() < 0){R_ = -R_;}Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z);// convert to cv::MatR = (Mat_<double>(3, 3) << R_(0, 0), R_(0, 1), R_(0, 2),R_(1, 0), R_(1, 1), R_(1, 2),R_(2, 0), R_(2, 1), R_(2, 2));t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}void VisualOdometer::calc_pose_relative(const Frame& ref, Frame& cur, const std::vector<cv::DMatch>& matches)
{vector<Point3d> ref_key_points_3d, cur_key_points_3d;vector<Point2d> ref_key_points_2d, cur_key_points_2d;// 筛选3D点for(auto match : matches){Point3d ref_key_point_3d = ref.key_points_3d[match.queryIdx];Point3d cur_key_point_3d = cur.key_points_3d[match.trainIdx];if (ref_key_point_3d.z == 0 || cur_key_point_3d.z == 0){continue;}ref_key_points_3d.push_back(ref_key_point_3d);cur_key_points_3d.push_back(cur_key_point_3d);ref_key_points_2d.push_back(ref.key_points[match.queryIdx].pt);cur_key_points_2d.push_back(cur.key_points[match.trainIdx].pt);}// 3D点计算位姿Mat R, T;//pose_estimation_3d3d(cur_key_points_3d, ref_key_points_3d, R, T);pose_estimation_3d2d(ref_key_points_3d, cur_key_points_2d, R, T);cur.R = R * ref.R;cur.T = R * ref.T + T;
}void VisualOdometer::feature_match(const Frame& ref, const Frame& cur, std::vector<cv::DMatch>& matches)
{vector<DMatch> initial_matches;BFMatcher matcher(NORM_HAMMING);matcher.match(ref.descriptors, cur.descriptors, initial_matches);double min_dis = initial_matches[0].distance;for(auto match : initial_matches){if (match.distance < min_dis)min_dis = match.distance;}matches.clear();for(auto match : initial_matches){if (match.distance <= MAX(min_dis * 2, 30))matches.push_back(match);}
}void VisualOdometer::add(double timestamp, const Mat &rgb, const Mat &depth)
{Frame frame;frame.time_stamp = timestamp;frame.rgb = rgb.clone();frame.depth = depth.clone();// 提取rgb图像的orb特征点VisualOdometer::feature_extract(rgb, frame);// 提取关键点的深度信息VisualOdometer::calc_depth(depth, frame);// 如果不是第一帧if (VisualOdometer::frames.size() == 0){frame.R = Mat::eye(3,3,CV_64FC1);frame.T = Mat::zeros(3,1,CV_64FC1);}else{// 当前帧与上一帧特征点匹配VisualOdometer::feature_match(VisualOdometer::frames[VisualOdometer::frames.size()-1], frame,VisualOdometer::matches);// 计算相对位姿关系VisualOdometer::calc_pose_relative(VisualOdometer::frames[VisualOdometer::frames.size()-1], frame,VisualOdometer::matches);}// 将当前帧加入队列VisualOdometer::frames.push_back(frame);
}void VisualOdometer::get_pose(int frame_idx, Mat &R, Mat &T)
{if (VisualOdometer::frames.size() <= abs(frame_idx)){R = Mat();T = Mat();return;}else{if (frame_idx >= 0){R = VisualOdometer::frames[frame_idx].R.clone();T = VisualOdometer::frames[frame_idx].T.clone();}else{R = VisualOdometer::frames[VisualOdometer::frames.size() + frame_idx].R.clone();T = VisualOdometer::frames[VisualOdometer::frames.size() + frame_idx].T.clone();}}
}void VisualOdometer::set_pose(int frame_idx, const cv::Mat& R, const cv::Mat& T)
{if (VisualOdometer::frames.size() <= abs(frame_idx)){return;}else{if (frame_idx >= 0){VisualOdometer::frames[frame_idx].R = R.clone();VisualOdometer::frames[frame_idx].T = T.clone();}else{VisualOdometer::frames[VisualOdometer::frames.size() + frame_idx].R = R.clone();VisualOdometer::frames[VisualOdometer::frames.size() + frame_idx].T = T.clone();}}
}void VisualOdometer::get_3d_points(int frame_idx, std::vector<cv::Point3d> &key_points_3d)
{if (VisualOdometer::frames.size() <= abs(frame_idx)){key_points_3d.clear();return;}else{if (frame_idx >= 0){key_points_3d = VisualOdometer::frames[frame_idx].key_points_3d;}else{key_points_3d = VisualOdometer::frames[VisualOdometer::frames.size() + frame_idx].key_points_3d;}}
}
  1. Frame类
#pragma once
#include <vector>
#include <opencv2/opencv.hpp>namespace oSLAM
{class Frame{public:std::vector<cv::KeyPoint> key_points;cv::Mat descriptors;std::vector<cv::Point3d> key_points_3d;cv::Mat R;cv::Mat T;cv::Mat rgb;cv::Mat depth;double time_stamp;};
}

最终在rgbd_dataset_freiburg2_desk数据集上测试类一下效果,感觉有点拉,跑着跑着就飘了(红色的是真值,绿色的是计算结果),等实现了完整的vo在回来分析一下。
在这里插入图片描述
结果展示使用了Pangolin和yuntianli91的pangolin_tutorial

相关文章:

【从零开始写视觉SLAM】v0.1基于特征点的简单VO

v0.1版本的oSLAM实现了基于orb特征点的简单视觉里程计&#xff0c;通过连续两帧的rgbd数据实现相机相对位姿的估计。 #mermaid-svg-ibQfHFVHezQD5RWW {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-ibQfHFVHezQD5RW…...

CentOS-7 安装 MariaDB-10.8

一、安装之前删除已存在的 Mysql/MariaDB 1 查找存在的 MariaDB # 注意大小写 rpm -qa | grep MariaDB # rpm -qa 列出所有被安装的rpm package &#xff08;-qa:query all&#xff09; rpm -qa | grep mariadb # grep &#xff08;缩写来自Globally search a Regular Expre…...

Packet Tracer – 对 VLAN 实施进行故障排除 – 方案 1

Packet Tracer – 对 VLAN 实施进行故障排除 – 方案 1 地址分配表 设备 接口 IP 地址 子网掩码 交换机端口 VLAN PC1 NIC 172.17.10.21 255.255.255.0 S2 F0/11 10 PC2 NIC 172.17.20.22 255.255.255.0 S2 F0/18 20 PC3 NIC 172.17.30.23 255.255.255.0…...

五、c++学习(加餐1:汇编基础学习)

经过前面几节课的学习&#xff0c;我们在一些地方都会使用汇编来分析&#xff0c;我们学习汇编&#xff0c;只是学习一些基础&#xff0c;主要是在我们需要深入分析语法的时候&#xff0c;使用汇编分析&#xff0c;这样会让我们更熟悉c编译器和语法。 从这节课开始&#xff0c…...

iOS正确获取图片参数深入探究及CGImageRef的使用(附源码)

一 图片参数的正确获取 先拿一张图片作为测试使用 图片参数如下&#xff1a; 图片的尺寸为&#xff1a; -宽1236个像素点 -高748个像素点 -色彩空间为RGB -描述文件为彩色LCD -带有Alpha通道 请记住这几个参数&#xff0c;待会儿我们演示如何正确获取。 将这张图片分别放在…...

Typescript 5.0 发布:快速概览

探索最令人兴奋的功能和更新 作为一种不断发展的编程语言&#xff0c;TypeScript 带来了大量的改进和新功能。在本文中&#xff0c;我们将深入探讨 TypeScript 的最新版本 5.0&#xff0c;并探索其最值得关注的更新。 1. 装饰器 TypeScript 5.0 引入了一个重新设计的装饰器系…...

【图像处理 】卡尔曼滤波器原理

目录 一、说明 二、它是什么? 2.1 我们可以用卡尔曼滤波器做什么? 2.2 卡尔曼滤波器如何看待您的问题...

YOLOv5 实例分割入门

介绍 YOLOv5 目标检测模型以其出色的性能和优化的推理速度而闻名。因此,YOLOv5 实例分割模型已成为实时实例分割中最快、最准确的模型之一。 在这篇文章中,我们将回答以下关于 YOLOv5 实例分割的问题: YOLOv5检测模型做了哪些改动,得到了YOLOv5实例分割架构?使用的 Prot…...

数字城市发展下的技术趋势,你知道多少?

提到数字城市、智慧城市大家都会感觉经常在耳边听到&#xff0c;但是要确切说出具体的概念还是有一点难度的。具体来说&#xff1a;数字城市是一个集合多种技术的系统&#xff0c;以计算机技术、多媒体技术和大规模存储技术为基础&#xff0c;以宽带网络为纽带&#xff0c;运用…...

linux 串口改为固定

在/etc/udev/rules.d 目录下新建定义规则的文件 1. 文件名要按规范写否则改动无效2. 规则文件必须以.rules 结尾3. 规则文件名称必须遵循 xx-name.rules 格式&#xff08;xx 为数字或字母&#xff0c;name 为规则名称&#xff09;&#xff0c;例如 99-serial-ports.rules。4. 规…...

【SCI一区】考虑P2G和碳捕集设备的热电联供综合能源系统优化调度模型(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Redis缓存数据库(四)

目录 一、概述 1、Redis Sentinel 1.1、docker配置Redis Sentinel环境 2、Redis存储方案 2.1、哈希链 2.2、哈希环 3、Redis分区(Partitioning) 4、Redis面试题 一、概述 1、Redis Sentinel Redis Sentinel为Redis提供了高可用解决方案。实际上这意味着使用Sentinel…...

View中的滑动冲突

View中的滑动冲突 1.滑动冲突的种类 滑动冲突一般有3种, 第一种是ViewGroup和子View的滑动方向不一致 比如: 父布局是可以左右滑动,子view可以上下滑动 第二种 ViewGroup和子View的滑动方向一致 第三种 第三种类似于如下图 2.滑动冲突的解决方式 滑动冲突一般情况下有2…...

java boot项目基础配置之banner与日志配置演示 并教会你如何使用文档查看配置

上文 我们简单讲了一下 springboot 项目的配置 都是写在resources下的application.properties中 springboot 项目中 配置都写在这一个文件 可以说非常方便 不像之前 写个项目配置这里一个哪里一个 看到是非常费力 我们启动项目 这里有个图案 其实 这叫 banner 我们就用配置来…...

蓝鲸平台通过标准运维 API 安装 Agent

目录 一、背景 二、目的 三、创建安装agent流程 四、通过标准运维 API 安装 Agent 五、总结 一、背景 蓝鲸平台正常情况纳管主机需要在节点管理手工安装agent&#xff0c;不能达到完成自动化安装agent的效果。想通过脚本一键安装agent&#xff0c;而不需要在蓝鲸平台进行过…...

python 图片保存成视频

&#x1f468;‍&#x1f4bb;个人简介&#xff1a; 深度学习图像领域工作者 &#x1f389;工作总结链接&#xff1a;https://blog.csdn.net/qq_28949847/article/details/128552785 链接中主要是个人工作的总结&#xff0c;每个链接都是一些常用demo&#xff0c…...

uniapp 引入 Less SCSS

✨求关注~ &#x1f600;博客&#xff1a;www.protaos.com 本文将介绍如何在 UniApp 中引入 Less 和 SCSS&#xff0c;两种流行的 CSS 预处理器。通过使用 Less 和 SCSS&#xff0c;你可以在 UniApp 项目中更灵活地编写样式&#xff0c;并享受预处理器提供的便利功能。 代码实现…...

Linux程序设计:文件操作

文件操作 系统调用 write //函数定义 #include <unistd.h> size_t write(int fildes, const void *buf, size_t nbytes); //示例程序 #include <unistd.h> #include <stdlib.h> int main() { if ((write(1, “Here is some data\n”, 18)) ! 18)write(2, …...

【自制C++深度学习推理框架】Tensor模板类的设计思路

Tensor模板类的设计思路 为什么要把Armadillo线性代数库arma::fcube封装成Tensor模板类&#xff1f; arma::fcube是Armadillo线性代数库中的一种数据类型&#xff0c;它是一个三维的float类型张量。Armadillo库是一个C科学计算库&#xff0c;提供了高效的线性代数和矩阵运算。…...

linux--systemd、systemctl

linux--systemd、systemctl 1 介绍1.1 发展sysvinitupstart主角 systemd 登场 1.2 简介 2 优点兼容性启动速度systemd 提供按需启动能力采用 linux 的 cgroups 跟踪和管理进程的生命周期启动挂载点和自动挂载的管理实现事务性依赖关系管理日志服务systemd journal 的优点如下&a…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...