Mysql数据库分库分表
为什么使用分库分表?
传统的将数据集中存储至单一数据节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足互联网的海量数据场景。
1)性能
从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降。
同时,高并发访问请求也使得集中式数据库成为系统的最大瓶颈。
2)可用性
从可用性的方面来讲,服务化的无状态型,能够达到较小成本的随意扩容,这必然导致系统的最终压力都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性,已成为整个系统的关键。
3)运维成本
从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值在 1TB 之内,是比较合理的范围。
那么为什么不选择 NoSQL 呢?
在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝试越来越多。 但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始终无法完成致命一击,而关系型数据库的地位却依然不可撼动
什么是分库分表?
水平分库
概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。
结果:
每个库的结构都一样
每个库中的数据不一样,没有交集
所有库的数据并集是全量数据
场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库的情况下。
分析:库多了,IO 和 CPU 的压力自然可以成倍缓解。
水平分表
概念:以字段为依据,按照一定策略(hash、range 等),讲一个表中的数据拆分到多个表中。
结果:
每个表的结构都一样。
每个表的数据不一样,没有交集,所有表的并集是全量数据。
场景:系统绝对并发量没有上来,只是单表的数据量太多,影响了 SQL 效率,加重了 CPU 负担,以至于成为瓶颈,可以考虑水平分表。
分析:单表的数据量少了,单次执行 SQL 执行效率高了,自然减轻了 CPU 的负担。
垂直分库
概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中
结果:
每个库的结构都不一样。
每个库的数据也不一样,没有交集。
所有库的并集是全量数据。
场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块的情况下。
分析:到这一步,基本上就可以服务化了。例如:随着业务的发展,一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再者,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。
垂直分表
概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表中(主表和扩展表)。
结果:
每个表的结构不一样。
每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据。
所有表的并集是全量数据。
场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大,以至于数据库缓存的数据行减少,查询时回去读磁盘数据产生大量随机读 IO,产生 IO 瓶颈
分析:
可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能经常会查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表,这样更多的热点数据就能被缓存下来,进而减少了随机读 IO。拆了之后,要想获取全部数据就需要关联两个表来取数据。但记住千万别用 Join,因为 Join 不仅会增加 CPU 负担并且会将两个表耦合在一起(必须在一个数据库实例上)。关联数据应该在 Service 层进行,分别获取主表和扩展表的数据,然后用关联字段关联得到全部数据。
什么时候考虑分库分表
能不分就不分
并不是所有表都需要切分,主要还是看数据的增长速度。切分后在某种程度上提升了业务的复杂程度。不到万不得已不要轻易使用分库分表这个“大招”,避免“过度设计”和“过早优化”。
分库分表之前,先尽力做力所能及的优化:升级硬件、升级网络、读写分离、索引优化等。当数据量达到单表瓶颈后,在考虑分库分表。
数据量过大,正常运维影响业务访问
这里的运维是指:
对数据库备份,如果单表太大,备份时需要大量的磁盘 IO 和网络 IO。
对一个很大的表做 DDL,MySQL会锁住整个表,这个时间会很长,这段时间业务不能访问此表,影响很大。
大表经常访问和更新,就更有可能出现锁等待。
随着业务发展,需要对某些字段垂直拆分
这里就不举例了,在实际业务中都可能会碰到,有些不经常访问或者更新频率低的字段应该从大表中分离出去。
数据量快速增长
随着业务的快速发展,单表中的数据量会持续增长,当性能接近瓶颈时,就需要考虑水平切分,做分库分表了。
分库分表带来的问题
事务一致性问题
①分布式事务
当更新内容同时存在于不同库找那个,不可避免会带来跨库事务问题。跨分片事务也是分布式事务,没有简单的方案,一般可使用“XA 协议”和“两阶段提交”处理。
分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点,推后了提交事务的时间点,延长了事务的执行时间,导致事务在访问共享资源时发生冲突或死锁的概率增高。
随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平扩展的枷锁。
②最终一致性
对于那些性能要求很高,但对一致性要求不高的系统,往往不苛求系统的实时一致性,只要在允许的时间段内达到最终一致性即可,可采用事务补偿的方式。
与事务在执行中发生错误立刻回滚的方式不同,事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查,基于日志进行对比,定期同标准数据来源进行同步等。
跨节点关联查询 Join 问题
切分之前,系统中很多列表和详情表的数据可以通过 Join 来完成,但是切分之后,数据可能分布在不同的节点上,此时 Join 带来的问题就比较麻烦了,考虑到性能,尽量避免使用 Join 查询。
解决的一些方法:
①全局表
全局表,也可看做“数据字典表”,就是系统中所有模块都可能依赖的一些表,为了避免库 Join 查询,可以将这类表在每个数据库中都保存一份。这些数据通常很少修改,所以不必担心一致性的问题。
②字段冗余
一种典型的反范式设计,利用空间换时间,为了性能而避免 Join 查询。
例如,订单表在保存 userId 的时候,也将 userName 也冗余的保存一份,这样查询订单详情顺表就可以查到用户名 userName,就不用查询买家 user 表了。
但这种方法适用场景也有限,比较适用依赖字段比较少的情况,而冗余字段的一致性也较难保证。
③数据组装
在系统 Service 业务层面,分两次查询,第一次查询的结果集找出关联的数据 id,然后根据 id 发起器二次请求得到关联数据,最后将获得的结果进行字段组装。这是比较常用的方法。
④ER 分片
分片键的选择?
分库分表后,分片键的选择非常重要。一般来说是这样的:
信息表,使用 id 进行分片。例如说,文章、商品信息等等。
业务表,使用 user_id 进行分片。例如说,订单表、支付表等等。
日志表,使用 create_time 进行分片。例如说,访问日志、登陆日志等等。
分片算法的选择?
选择好分片键之后,还需要考虑分片算法。一般来说,有如下两种:
取余分片算法。例如说,有四个库,那么 user_id 为 10 时,分到第 10 % 4 = 2 个库。
当然,如果分片键是字符串,则需要先进行 hash 的方式,转换成整形,这样才可以取余。
当然,如果分片键是整数,也可以使用 hash 的方式。
范围算法。
例如说,时间范围。
上述两种算法,各有优缺点。
对于取余来说:
好处,可以平均分配每个库的数据量和请求压力。
坏处,在于说扩容起来比较麻烦,会有一个数据迁移的过程,之前的数据需要重新计算 hash 值重新分配到不同的库或表。
对于 range 来说:
好处,扩容的时候很简单,因为你只要预备好,给每个月都准备一个库就可以了,到了一个新的月份的时候,自然而然,就会写新的库了。
缺点,但是大部分的请求,都是访问最新的数据。实际生产用 range,要看场景。
分库分表中间件
1)Cobar
阿里 b2b 团队开发和开源的,属于 Proxy 层方案。
早些年还可以用,但是最近几年都没更新了,基本没啥人用,差不多算是被抛弃的状态吧。而且不支持读写分离、存储过程、跨库 join 和分页等操作。
2)MyCAT
基于 Cobar 改造的,属于 Proxy 层方案,支持的功能非常完善,而且目前应该是非常火的而且不断流行的数据库中间件,社区很活跃,也有一些公司开始在用了。但是确实相比于 Sharding Sphere 来说,年轻一些,经历的锤炼少一些。
3)Atlas
360 开源的,属于 Proxy 层方案,以前是有一些公司在用的,但是确实有一个很大的问题就是社区最新的维护都在 5 年前了。所以,现在用的公司基本也很少了。
4)TDDL
淘宝团队开发的,属于 client 层方案。支持基本的 crud 语法和读写分离,但不支持 join、多表查询等语法。目前使用的也不多,因为还依赖淘宝的 diamond 配置管理系统。
5)Sharding Sphere
Sharding Sphere ,可能是目前最好的开源的分库分表解决方案,目前已经进入 Apache 孵化。
相关文章:
Mysql数据库分库分表
为什么使用分库分表? 传统的将数据集中存储至单一数据节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足互联网的海量数据场景。 1)性能 从性能方面来说,由于关系型数据库大多采用 B 树类型的索引,在数…...

SpringBoot热部署插件原理分析及实战演练
目录 1、关于热部署(Hot Deploy)产生的背景 1)热部署出现前 2)热部署出现后 2、spring-boot-devtools插件原理 1)解决变更文件自动加载到JVM中 2)spring-boot-devtools重启速度比手动重启快 3、关于…...

【C++ 入坑指南】(10)函数
文章目录 简介定义实例函数的分文件编写 简介 函数是一组一起执行一个任务的语句。每个 C 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数。 您可以把代码划分到不同的函数中。如何划分代码到不同的函数中是由您来决定…...

P2233 [HNOI2002]公交车路线
题目描述 在长沙城新建的环城公路上一共有 8 个公交站,分别为 A、B、C、D、E、F、G、H。公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另外一个公交站往往要换几次车,例如从公交站 A 到公交站 D,你就至少需要…...
java入门-W11(K168-K182)网络编程
1. 网络编程入门 1.1 网络编程概述 计算机网络 是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统…...

距离6月18日DAMA-CDGA/CDGP认证考试还有31天,报名从速
6月18日DAMA-CDGA/CDGP数据治理认证考试开放报名中! 考试开放地区:北京、上海、广州、深圳、长沙、呼和浩特、杭州、南京、济南、成都、西安。其他地区凑人数中… DAMA-CDGA/CDGP数据治理认证班进行中,报名从速! DAMA认证为数据管…...
PO、VO、DAO、BO、DTO、POJO区分
一 分层领域模型规约: DO(Data Object):此对象与数据库表结构一一对应,通过 DAO 层向上传输数据源对象。DTO(Data Transfer Object):数据传输对象,Service 或 Manager 向外传输的对象。BO(Business Object):业务对象,由 Service 层输出的封装…...

MobPush Flutter平台插件
集成准备 注册账号 使用PushSDK之前,需要先在MobTech官网注册开发者账号,并获取MobTech提供的AppKey和AppSecret,详情可以点击查看注册流程 MobPush后台配置 注册MobTech账号后,需要在MobTech后台进行相关信息的配置ÿ…...
机器学习面试题库:K-means
一、简述K-means算法的原理及工作流程? 原理: K-means是一个无监督的聚类算法。它的主要目的是对同一组数据对象进行分类。其原理是基于样本间的相似性来聚类分析的,即将所有样本分为K个簇,使得同一个簇间中样本相似性最高&#…...

Linux:文本三剑客之awk
Linux:文本三剑客之awk 一、awk编辑器1.1 awk概述1.2 awk工作原理1.3 awk与sed的区别 二、awk的应用2.1 命令格式2.2 awk常见的内建变量(可直接用) 三、awk使用3.1 按行输出文本3.2 按字段输出文本3.3 通过管道、双引号调用 Shell 命令 一、a…...

如何借助Kafka持久化存储K8S事件数据?
大家应该对 Kubernetes Events 并不陌生,特别是当你使用 kubectl describe 命令或 Event API 资源来了解集群中的故障时。 $ kubectl get events15m Warning FailedCreate …...

一种基于非均匀分簇和建立簇间路由的算法的无线传感器网络路由协议(Matlab代码实现)
目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨💻4 Matlab代码 💥1 概述 本文准备了一种路由方法,该方法使传感器通过有效地使用能量将数据从发送方加载到接收器,因为它在 LEAC…...

usb摄像头驱动打印信息
usb摄像头驱动打印信息 文章目录 usb摄像头驱动打印信息 在ubuntu中接入罗技c920摄像头打印的信息如下: [ 100.873222] usb 3-2: new high-speed USB device number 5 using xhci_hcd [ 101.230728] usb 3-2: New USB device found, idVendor046d, idProduct08e5 …...
银行半结构化和无领导群面注意事项
银行可以同时报考多家,因此部分同学也积累了不少宝贵的面试“失败”经验。今天小编就来给大家说说半结构化和无领导群面的注意事项,从如信银行考试中心了解到的整理如下: 一、半结构化面试注意事项: 半结构化面试更侧重于了解考生…...

今天公司来了个拿 30K 出来的测试,算是见识到了基础的天花板
今天上班开早会就是新人见面仪式,听说来了个很厉害的大佬,年纪还不大,是上家公司离职过来的,薪资已经达到中高等水平,很多人都好奇不已,能拿到这个薪资应该人不简单,果然,自我介绍的…...

SSM整合(单元测试、结果封装、异常处理)
文章目录 1,SSM整合1.1 流程分析1.2 整合配置步骤1:创建Maven的web项目步骤2:添加依赖步骤3:创建项目包结构步骤4:创建SpringConfig配置类步骤5:创建JdbcConfig配置类步骤6:创建MybatisConfig配置类步骤7:创建jdbc.properties步骤8:创建SpringMVC配置类步…...

C++ list
C list 📟作者主页:慢热的陕西人 🌴专栏链接:C 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 本博客主要内容介绍了C中list和相关接口的使用 Clist C listⅠ. li…...

【JavaScript】ES6新特性(2)
5. 字符串扩展 5.1 includes函数 判断字符串中是否存在指定字符 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name&q…...

CST-FSS/周期谐振单元的仿真
引言 这几天要仿真超表面,上下求索CST有关相关内容的教程,视频倒是有不少,不过发现很多人忽略了官方帮助文档。本文以官方帮助文档为基础,写一个有关使用CST实现FSS/超表面这类周期结构的笔记。 官方帮助文档 CST有关FSS的内容使用了一个金属谐振圆环作为例子,这是由于…...

重新理解RocketMQ Commit Log存储协议
最近突然感觉:很多软件、硬件在设计上是有root reason的,不是by desgin如此,而是解决了那时、那个场景的那个需求。一旦了解后,就会感觉在和设计者对话,了解他们的思路,学习他们的方法,思维同屏…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...